
Query Evaluation under Differential Privacy

by

Wei Dong

A Thesis Submitted to

The Hong Kong University of Science and Technology

in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy

in the Department of Computer Science and Engineering

June 2023, Hong Kong

Authorization

I hereby declare that I am the sole author of the thesis.

I authorize the Hong Kong University of Science and Technology to lend this thesis

to other institutions or individuals for the purpose of scholarly research.

I further authorize the Hong Kong University of Science and Technology to reproduce

the thesis by photocopying or by other means, in total or in part, at the request of other

institutions or individuals for the purpose of scholarly research.

Wei Dong

June 2023

ii

Query Evaluation under Differential Privacy

by

Wei Dong

This is to certify that I have examined the above PhD thesis

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by

the thesis examination committee have been made.

Prof. Ke Yi, Thesis Supervisor

Prof. Xiaofang Zhou, Head of Department

Department of Computer Science and Engineering

June 2023

iii

Acknowledgments

I am deeply grateful to those who have supported me throughout my Ph.D. journey.

Their guidance, encouragement, and help have been invaluable in enabling me to complete

this thesis.

First and foremost, I extend my heartfelt thanks to my supervisor, Prof. Ke Yi.

As a mentor, he has been exceptional. His guidance during my early years as a Ph.D.

student has been crucial in shaping my research skills, from identifying potential problems

to designing solutions and writing academic papers. I am grateful for his unwavering

patience in correcting my mistakes and for his support, which has enabled me to grow

and develop rapidly. As a pure researcher, his hard work and enthusiasm for research

have been truly inspiring, setting an excellent example for me to follow. As a friend,

he has offered invaluable suggestions and warm-hearted encouragement whenever I faced

challenges. Without any exaggeration, I consider being supervised by Prof. Yi as one of

the greatest blessings in my life.

I also extend my sincere appreciation to all committee members of my Ph.D. qualifi-

cation exam, thesis proposal defense, and thesis defense, Prof. Dimitris Papadias, Prof.

Dimitris Papadopoulos, Prof. Jiheng Zhang, Prof. Hongyu Yu, Prof. Xiaokui Xiao, Prof.

Raymond Wong, and Prof. Qiong Luo. Their insightful comments and suggestions have

been invaluable in shaping this thesis.

I am also grateful to my colleagues in my research group, including Dr. Xiao Hu, Dr.

Bin Wu, Dr. Yu Chen, Dr. Yilei Wang, Dr. Yuan Qiu, Dr. Qichen Wang, Dr. Ziyue

Huang, Haoqian Zhang, Qiyao Luo, Juanru Fang, Yuting Liang, Dajun Sun, Bingnan

Chen, Zijun Chen, and Bingyang Dai. Their camaraderie, intellectual discussions, and

willingness to lend a helping hand have made my Ph.D. journey more enriching.

Moreover, I want to thank my friends at HKUST, especially Xingbo Wang, Hongwei

Liu, Zhuoyi Peng, Zhenhua Xu, Ruijie Ma, Zhiliang Tian, Zezheng Feng, Guanlan Zhang,

Haoyang Li, Maocheng Li, Shizhe Diao, Yishuo Zhang, Keyou Chen, and Wuxian He,

for their support and companionship. Their presence in my life has made each challenge

more bearable and has added color to my Ph.D. journey.

Finally, I must express my gratitude to my parents and family members. Their unwa-

vering support and encouragement have been a source of strength throughout my Ph.D.

journey. I am deeply grateful for their love and care.

iv

TABLE OF CONTENTS

Title Page i

Authorization Page ii

Signature Page iii

Acknowledgments iv

Table of Contents v

List of Figures viii

List of Tables ix

Abstract x

Chapter 1 Introduction 1

1.1 Tuple-DP 2

1.1.1 Previous Work 3

1.1.2 Neighborhood Optimality 5

1.1.3 Our Proposal: Residual Sensitivity [29, 31] 6

1.1.3.1 JA Queries 6

1.1.3.2 SJA Queries 6

1.1.3.3 SPJA Queries 7

1.1.3.4 Integration to the relational database system 7

1.2 User-DP 8

1.2.1 Down-neighborhood Optimality 8

1.2.2 SA Queries 9

1.2.2.1 Our Contribution [30] 10

1.2.3 SPJA Queries 10

1.2.3.1 Our Contribution [27] 11

1.2.4 Multiple SJA Queries 12

1.2.4.1 Our Contribution [28] 13

1.3 Organization 14

Chapter 2 Related Work 15

I Queries Answering under Tuple-level Differential Privacy 17

Chapter 3 Answering SPJA Queries under Tuple-DP 18

3.1 Preliminaries 18

3.1.1 Conjunctive Queries 18

3.1.2 Differential Privacy in Relational Databases under Tuple-DP 19

v

3.1.3 Sensitivity-based DP Mechanisms 20

3.1.3.1 Smooth Sensitivity 20

3.2 Residual Sensitivity 22

3.2.1 Residual Queries and Boundaries 22

3.2.1.1 Sensitivity of TE 24

3.2.2 Local Sensitivity of CQs 27

3.2.3 Global Sensitivity of CQs 30

3.2.4 Smooth Sensitivity of CQs 32

3.2.5 Deriving L̂S
(k)

Q (·) 33

3.2.6 Computing RSβ
Q(·) 38

3.3 Neighborhood Optimality 40

3.3.1 General Neighborhood Lower Bounds 40

3.3.2 Neighborhood Lower Bound for CQs 44

3.3.3 Optimality of RSβ
Q(·) 47

3.3.4 Elastic Sensitivity 48

3.4 CQs with Predicates 49

3.4.1 General Predicates 50

3.4.2 Comparison and Inequality Predicates 52

3.5 Non-full CQs 54

3.6 Experiments 58

3.6.1 Setup 58

3.6.2 Implementation 60

3.6.3 Experimental Results 62

II Queries Answering under User-level Differential Privacy 67

Chapter 4 Answering SA Queries under User-DP 68

4.1 Preliminaries 68

4.1.1 Notation 68

4.1.2 More Knowledge of Differential Privacy 68

4.1.3 The Sparse Vector Technique 69

4.1.4 The Clipped Sum Estimator 70

4.2 Methodology 71

4.2.1 Estimate Radius 71

4.2.2 Sum Estimation 72

Chapter 5 Answering SPJA Queries under User-DP 74

5.1 Preliminaries 74

5.1.1 Database Queries 74

5.1.2 Differential Privacy in Relational Databases with Foreign Key Con-

straints (User-DP Model) 75

5.2 Instance Optimality under User DP 77

5.3 R2T: Instance-optimal Truncation 79

5.4 Truncation for SJA Queries 82

5.5 Truncation for SPJA Queries 85

vi

5.6 Multiple Primary Private Relations 88

5.7 System Implementation 89

5.8 Experiments 92

5.8.1 Setup 92

5.8.2 Graph Pattern Counting Queries 93

5.8.3 SPJA Queries 96

Chapter 6 Answering Multiple SPA Queries under User-DP 98

6.1 Preliminaries 98

6.1.1 Notation 98

6.1.2 More Differential Privacy 98

6.2 Multiple Self-join-free Queries 100

6.3 Multiple Queries with Self-joins 102

6.3.1 Why Self-joins are Hard 102

6.3.2 An Exponential-time Algorithm 103

6.3.3 A Polynomial-time Algorithm 107

6.4 System Implementation 114

6.5 Experiments 117

6.5.1 Setup 117

6.5.2 Experimental Results 119

Chapter 7 Conclusion 123

Appendix A List of Publications 134

vii

LIST OF FIGURES

3.1 Residual query, boundary, maximum boundary, and witness. 23

3.2 QĒ, Q◦
Ē

, ∂Q1
Ē

and ∂Q2
Ē

. 49

3.3 The join structure of queries. 59

3.4 The rewriting of query of TE for Q3 with E = {R, N, C, S, L}. 61

3.5 Running times and noise levels of residual sensitivity and elastic sensitiv-

ity with different noise mechanisms for different queries and data scales.

R/E represents the noise level calculated from residual sensitivity or elas-

tic sensitivity, respectively, while Cau/Lap denotes the respective noise

mechanism. 64

3.6 The noise level of residual sensitivity and elastic sensitivity for various

values of ε. 65

5.1 An illustration of R2T. 80

5.2 Example of edge counting. 84

5.3 System structure. 89

5.4 The foreign-key graph of TPC-H schema. 89

5.5 The structure of queries. 92

5.6 Error levels of various mechanisms on graph pattern counting queries var-

ious values of ε. 94

5.7 Running times and error levels of R2T and local-sensitivity based mecha-

nism (LS) for different data scales. 96

5.8 Error levels of R2T and local-sensitivity based mechanism (LS) with dif-

ferent GSQ. 97

6.1 An example showing Q(I, r) has large sensitivity. 103

6.2 The structure of queries. 116

6.3 Running times and error levels of PMSJA and R2T for Q3 with different

d and ε. 120

6.4 Running times and error levels of PMSJA and R2T with different queries,

data scales and ε. 121

viii

LIST OF TABLES

3.1 Notation used in the paper. 24

3.2 Comparison among wPINQ, residual sensitivity and elastic sensitivity. 59

5.1 Graph datasets used in the experiments. 92

5.2 Comparison between R2T, naive truncation with smooth sensitivity (NT),

smooth distance estimator (SDE), LP-based Mechanism (LP), and recur-

sive mechanism (RM) on graph pattern counting queries. 94

5.3 Error levels of R2T and LP-based mechanism (LP) with different τ . 95

5.4 Running times of R2T with and without early stop. 95

5.5 Comparison between R2T and local-sensitivity based mechanism (LS) on

SQL queries. 96

6.1 Comparison between PMSJA and state-of-the-art algorithms (OptMean [46]

for self-join-free queries and R2T [27] for self-join queries) on TPC-H queries

with group-by operator. We use data scale equal to 2, ε = 4 and report the

relative error. 119

6.2 Comparison between PMSJA and R2T [27] on graph pattern counting

queries with d = 10 on different networks. We use ε = 4 and report

relative error. 119

ix

Query Evaluation under Differential Privacy

by Wei Dong

Department of Computer Science and Engineering

The Hong Kong University of Science and Technology

Abstract

Differential privacy (DP) has garnered significant attention from both academia and

industry due to its potential in offering robust privacy protection for individual data

during analysis. With the increasing volume of sensitive information being collected by

organizations and analyzed through SQL queries, the development of a general-purpose

query engine that is capable of supporting a broad range of SQLs while maintaining

differential privacy has become the holy grail in privacy-preserving query release. Over

the past several years, the database and security communities have made numerous efforts

to achieve this objective. However, two major challenges still exist:

Challenge 1: Privacy guarantee in relational databases Informally speaking, DP

requires indistinguishability of the query results whether any particular individual’s data

is included or not in the database. While this can be easily defined and well studied over

a single flat table, the situation becomes more complex in a relational database with the

presence of multiple relations, foreign keys, and the join operator.

Challenge 2: Optimal privacy-utility trade-off Noise injection is inherently neces-

sary for privacy protection, but the central scientific question is how to achieve the lowest

error (i.e., highest utility) under a given privacy budget. Unfortunately, for the problem

of relational query evaluation under DP, traditional notions of optimality, i.e., instance

optimality and worst-case optimality, are either unattainable or meaningless. Thus, a new

notion of optimality is needed for answering this question.

x

In this thesis, we aim at tackling these challenges. To model the complex situation

of relational databases, we study two different DP policies: tuple-DP, which protects the

privacy of single tuples in each relation, and user-DP, which protects all data belonging

to each user via foreign keys. Under each policy, we have designed DP mechanisms for

answering a broad class of queries consisting of the selection, projection, aggregation, and

join operators. To formalize their optimality, we introduce the notion of neighborhood

optimality, which sits between instance optimality and worst-case optimality. Finally,

based on the algorithms and theory developed, we have built a DP-SQL system that

significantly outperforms existing systems in terms of both utility and efficiency.

xi

CHAPTER 1

INTRODUCTION

Suppose a data analyst is interested in the total number of items sold this year where

the customer and supplier are from the same nation in a given region, s/he would issue

the following query (assuming the TPC-H schema):

SELECT count(*)

FROM Region, Nation, Customer, Orders, Supplier, Lineitem

WHERE Orders.Orderdate > 2023-01-01

AND Region.Name = ’[REGION]’

AND Region.RK = Nation.RK AND Lineitem.SK = Supplier.SK

AND Nation.NK = Customer.NK AND Customer.CK = Orders.CK

AND Orders.OK = Lineitem.OK AND Nation.NK = Supplier.NK;

This type of queries can involve 4 basic relational operators: Selection, Projection, Join

and Aggregation (like Count, Sum) and is called select-project-join-aggregation (SPJA)

queries. In this thesis, we mainly discuss count and sum aggregations. Such queries are

very common in today’s data analytical tasks and are a central problem in databases that

have been extensively studied in the literature. Sophisticated query processing algorithms

and systems have been and are continually being developed and optimized throughout

the years.

However, many datasets contain private information, and privacy concerns have be-

come the main hurdle to making use of today’s big data for knowledge discovery and

decision making. In this example, while it might be safe to reveal Region and Nation,

the other four relations contain private relationship information between various entities,

such as which customer has placed a particular order, which items are contained in an

order, which suppliers provide a certain item, so their privacy must be protected. Mean-

while, Differential privacy (DP), already deployed by Apple [25], Google [39], Microsoft

[26], and the US Census Bureau [61], has become the standard notion for private data

release, due to its strong protection of individual information. It requires that any individ-

ual cannot largely change the query result thus his information can be masked. Formally

1

speaking, for a query Q, let Q(I) be the result of evaluating Q on database instance I and

a mechanism MQ : I → Y is (ε, δ)-DP if

Pr[MQ(I) ∈ Y] ≤ eε · Pr[MQ(I′) ∈ Y] + δ (1.1)

for any subset of output Y ⊆ Y and any pair of neighboring instances I, I′, i.e., d(I, I′) = 1.

Here, d(I, I′) denotes the minimum number of individual information needed to be changed

to turn I into I′. ε, δ are called privacy budget. Typically, ε is a constant ranging from

0.1 to 10, with smaller values corresponding to stronger privacy guarantees. On the other

hand, δ should be much smaller than 1/N to ensure the privacy of individual tuples,

where N = |I| is the instance size; in particular, the case where δ = 0 is referred to as

pure differential privacy, which is more desirable if achieved.

In the last 10 years, we have seen many efforts put into answering SQL queries under

DP. In this problem, tuple-DP and user-DP are two popular policies. As the name

suggests, the former aims at protecting tuples while the latter is for users, which can have

multiple tuples. They are like protecting the privacy of edges and nodes in computing

graph statistics, which is a special case of SQL queries. These two policies have different

privacy-utility trade-offs. User-DP provides stronger privacy while tuple-DP usually yields

a higher utility. Choosing the right policy depends on the privacy requirement of the

application.

1.1 Tuple-DP

In the early stages of addressing SPJA queries, the predominant method was the tuple-

DP approach, which was exclusively focused on queries involving count aggregation. On

the other hand, sum aggregation, where each tuple can have an unbounded impact on

the query result, was typically addressed using the user-DP technique. Unless otherwise

specified, discussions surrounding tuple-DP and user-DP will refer to count aggregation

and sum aggregation, respectively. For query answering under tupe-DP, a dominating

approach is the following sensitivity framework.

1. Compute the query answer on the given database instance.

2. Compute some notions of sensitivity of the query SQ(I), which measure the differ-

ence between the query answers on two database instances that differ by one tuple

(neighboring database instances).

2

3. Release a noise-masked query answer, where the noise is drawn from some zero-mean

distribution, calibrated appropriately according to the sensitivity.

Step (1) and (3) are both well understood in the literature, so the key challenge is step

(2). There are two main desiderata when designing a sensitivity measure. On one hand,

the sensitivity should be as small as possible, as the noise level is proportional. More

precisely, if we use the expected ℓ2-error

Err(MQ, I) =
√
E [(MQ(I)− |Q(I)|)2],

then various noise distributions (Section 3.1.3 gives more details) have been studied all

achieve Err(MQ, I) = Θ(SQ(I)). 1 Adding noise with a magnitude greater than the actual

query answer would completely destroy its utility. On the other hand, the sensitivity

should be computed efficiently.

Below, we review previous measures of sensitivity for answering SPJA queries under

tuple-DP along the two desiderata, before presenting our proposal.

1.1.1 Previous Work

Global sensitivity The global sensitivity GSQ is defined as the maximum difference

between the query answers on any two neighboring database instances. Adding Laplace

noise proportional to GSQ preserves ε-DP and this mechanism is usually called the Laplace

mechanism. Note that global sensitivity is a property of the query only, and does not

depend on the actual instance. Equivalently speaking, global sensitivity considers the

worst-case instance, and measures the amount of change in the query answer when a

tuple is changed in that worst-case instance. It is worst-case optimal and works well for

counting queries over a single relation, where the global sensitivity is just 1. However, the

global sensitivity can be as large as Nn−1 when (unrestricted) joins are present, where n

is the number of relations involved in Q.

Local and smooth sensitivity When the global sensitivity is high or unbounded, it

is tempting to use the sensitivity of the query on the particular given instance, which is

1Throughout the thesis, we adopt the convention of data complexity [2], i.e., all asymptotic notations

suppress dependencies on the query size. We also take ε to be a constant, as with most work on

differential privacy.

3

usually much lower, except on contrived instances. This is referred to as the local sensi-

tivity LSQ(I). However, as pointed out by Nissim et al. [67], using the local sensitivity

to calibrate noise is not differentially private. This is because the local sensitivity can

be very different on two neighboring databases, so the noise level may reveal information

about an individual tuple. Essentially, the problem is that local sensitivity, when con-

sidered as a query, has high global sensitivity. To get around the problem, the idea is

to use a smooth (i.e., having low global sensitivity) upper bound of the local sensitivity.

Clearly, the smaller this upper bound is, the better utility we would obtain, and the tight-

est smooth upper bound is termed the smooth sensitivity SSQ(I) [67] (see Section 3.1.3.1

for more precise definitions).

Although smooth sensitivity has met the first desideratum, the second one is less

clear. In fact, it is shown that for certain problems, computing or even approximating the

smooth sensitivity is NP-hard [67]. For multi-way join counting queries, so far, no known

polynomial algorithm exists.

Elastic sensitivity Due to the lack of an efficient algorithm for computing the smooth

sensitivity for SPJA queries under tuple-DP, Johnson et al. [48] proposed elastic sensi-

tivity, which is also a smooth upper bound of local sensitivity, but not as tight as smooth

sensitivity. Elastic sensitivity achieves the second desiderata: it can be computed in lin-

ear time, and can be implemented easily using a constant number of SQL queries, plus a

user-defined function (UDF) that combines the answers of these queries using a certain

formula. However, it does not really achieve the first desiderata. Theoretically, the gap

between elastic sensitivity and smooth sensitivity can be as large as O (Nn−1). In prac-

tice, it often yields noise levels that are orders-of-magnitude higher than the actual query

answer, as demonstrated in the experiments of [48], as well as our own experiments.

Overall, there is still no known solution to this problem that can have a good tradeoff

between efficiency and utility. Then, what is a good tradeoff? For efficiency, we hope the

algorithm has a small computational complexity. But how do we quantify the utility of a

DP mechanism? As mentioned before, the worst-case optimality loses its utility. Ideally,

we would like the solution to be instance-optimality [40]. More formally, a DP mechanism

MQ(·) is said to be c-instance-optimal if

Err(MQ, I) ≤ c · Err(M′
Q, I),

4

for every instance I and every DP mechanism M′
Q(·). Unfortunately, as pointed out by

Asi and Duchi [10], instance-optimal DP mechanisms do not exist, unless the query is

trivial (i.e., it returns the same count on all instances), because for an I, one can always

design a trivial DP mechanismM′
Q(·) ≡ |Q(I)|. It works perfectly on I but fails miserably

on other instances. Yet, such a trivial M′
Q rules out instance-optimal mechanisms.

1.1.2 Neighborhood Optimality

To eliminate such a trivial M′
Q, Asi and Duchi [10] propose the following natural

relaxation of instance-optimality, which requiresM′
Q to not just work well for I, but also

in its neighborhood.

Definition 1.1.1 ((r, c)-neighborhood optimal DP mechanisms). An ε-DP mechanism

MQ(·) is said to be (r, c)-neighborhood optimal if for any instance I and any ε-DP mech-

anismM′
Q(·), there exists an instance I′ with d(I, I′) ≤ r such that

Err(MQ, I) ≤ c · Err(M′
Q, I

′). (1.2)

Note that neighborhood optimality smoothly interpolates between instance optimality

(r = 0) and worst-case optimality (r = N). It is also called local minimax optimality in

[10], as it minimizes (up to a factor of c) the maximum error in the local neighborhood

of I. As we are most interested in constant-factor approximations, we often use “r-

neighborhood optimal” as a shorthand of “(r, O(1))-neighborhood optimal”.

While more relaxed than instance optimality, neighborhood optimality is still not easy

to achieve (for small r). For example, we can show that, with the expected ℓ2 error metric,

the Median query (i.e., returning the median of N elements in [0, 1], for odd N) does not

have any (r, c)-neighborhood optimal mechanisms for r ≤ ⌊N/2⌋ and any c. To see this,

consider I = (0, . . . , 0) and M′
Q(·) ≡ 0. Note that all instances in the r-neighborhood

of I have output 0, so Err(M′
Q, I

′) = 0 for all I′ with d(I, I′) ≤ r. Thus, we must set

MQ(I) = 0 to satisfy (1.2). We can apply the same argument on I′′ = (1, . . . , 1) and

conclude that MQ(I′′) = 1. We have thus found two instances on which M(·) returns

different deterministic values, thus M cannot be DP by a standard argument [37].

Acute readers would realize that the negative result for Median relies on the fact

that there are certain instances (like (0, . . . , 0)) with a “flat” neighborhood, i.e., the

5

query output is the same within the neighborhood. Fortunately, for SJA queries (without

Projection), these flat neighborhoods do not exist. This is because in any instance I, one

can always add/remove a constant number (depending on Q) of tuples to change Q(I).

However, this is merely a necessary condition for a query to admit neighborhood-optimal

DP mechanisms. To actually design such a mechanismMQ(·), we need an upper bound on

Err(MQ, I), as well as a neighborhood lower bound on minM′
Q

maxI′:d(I,I′)≤r Err(M′
Q, I

′).

Note that both the upper bound and the lower bound are instance specific (i.e., functions

of I), and the worst-case (over all I) gap between the upper and lower bounds would

become the optimality ratio c.

1.1.3 Our Proposal: Residual Sensitivity [29, 31]

1.1.3.1 JA Queries

To answer SPJA queries under tuple-DP, we propose residual sensitivity RS(I). Let’s

first consider JA queries and defer the discussion of selection and projection. Here, we

relate both the upper and the lower bounds to the smooth sensitivity SS(·). On the

lower bound side, in Section 3.3.2, we show that SS(·) is an O(1)-neighborhood lower

bound. Thus, the smooth sensitivity based mechanism [67] is O(1)-neighborhood optimal.

However, SS(·) in general requires exponential time to compute. In Section 3.2, we define

the RS(·) and show it is a constant-factor upper bound of SS(·) in Section 3.3.3. Besides,

residual sensitivity can be computed in polynomial time, where the exponent depends

only on the join structure, not the database. In practice, the running time appears to be

linear, and is only slower than that for computing elastic sensitivity by a small constant

factor. Together with the lower bound, this yields our first main result:

Theorem 1.1.1. For any JA query Q under tuple-DP, there is an ε-DP mechanism

MQ(·) that is O(1)-neighborhood optimal. For any instance I, MQ(I) can be computed

in poly(N) time.

Then, we extend our solution to support selection and projection operations.

1.1.3.2 SJA Queries

The selection operation involves some predicates P1(y1), . . . , Pκ(yκ), each of which is a

computable function P : dom(y)→ {True,False} for a set of attributes y. Predicates are

6

important for expressing graph pattern counting queries. Suppose we would like to count

the number of length-3 paths (no repeated vertices) in a directed graph whose edges

are stored in a relation Edge. However, the JA query |Edge(x1, x2) ⋊⋉ Edge(x2, x3) ⋊⋉

Edge(x3, x4)| would not just count the number of length-3 paths, but also length-1 paths,

length-2 paths, and triangles. We have to equip the query with inequalities, i.e., xi ̸= xj

for all i ̸= j, to exclude these false positives. Another type of predicates is comparison,

i.e., xi ≤ xj or xi < xj, which are common in queries over spatiotemporal databases.

In Section 3.4 we show how to modify RS(·) to take these predicates into consideration,

while preserving its neighborhood optimality. The idea is conceptually easy: we just

materialize each predicate P (y) into a relation {t ∈ dom(y) | P (t)}, and then apply our

DP mechanism in Theorem 1.1.1. However, this poses a computational issue, since this

relation can be infinite (assuming infinite domains). To address this issue, we show that

it is actually possible to compute RS(·) without materializing the P (y)’s.

Theorem 1.1.2. For any SJA query Q where all predicates are inequalities or compar-

isons, there is an O(1)-neighborhood optimal ε-DP mechanismMQ(·) andMQ(I) can be

computed in poly(N) time.

1.1.3.3 SPJA Queries

To complete the picture, we finally study the SPJA queries in Section 3.5. Prior work

simply ignores the projection, and uses the sensitivity of the query without projection to

calibrate noise. We show how to extend RS(·) to handle the projection more effectively so

as to reduce the noise. Unfortunately, our lower bound no longer holds when projection is

involved, hence losing neighborhood optimality. However, we show that this is unavoid-

able. In particular, even for the simple query |πx2(R1(x1) ⋊⋉ R2(x1, x2))|, we show that it

does not admit any o(
√
N)-neighborhood optimal DP mechanisms with the expected ℓ2

error metric.

1.1.3.4 Integration to the relational database system

Similar to elastic sensitivity, residual sensitivity can also be computed by executing a

constant number of SQL queries, and then combining their answers using a UDF, although

the queries are slightly more complicated than those for elastic sensitivity. We have built a

system prototype based on PostgreSQL that can answer any SPJA query under tuple-DP.

7

1.2 User-DP

Now, let’s move towards the user-DP. Still with TPC-H schema, if a data analyst is

interested in the total number of orders this year, s/he would release the following query,

SELECT count(*) FROM Orders WHERE Orders.Orderdate > 2023-01-01;

Tuple-DP protects the privacy of each order and requires only constant noise. However,

in practice, we may hope to protect the privacy of users, i.e., customers in this case,

who can own multiple orders. The issue above was first identified by Kotsogiannis et

al. [57], who also formalized the DP policy for relational databases with FK constraints.

The essence of their model (a rigorous definition is given in Section 6.1.2) is that the

individuals and their private data are stored in separate relations that are linked by FKs.

Adding/deleting one tuple will add/delete all tuples referencing it. The above query can

be rewritten as

Q := |Customer(CK) ⋊⋉ Orders(CK,OD)|.

Here, the underlined attribute CK is the primary key (PK), while Orders.CK is a foreign

key (FK) referencing Customer.CK. Our target is to protect the tuples in Customer.

Without loss of generality, we assume there is only one relation storing individuals

since if there are multiple ones, we can create a new relation to store all individuals and

build FK constraints between it and the others. Therefore, the self-join query may refer

the cases with multiple individual relations

1.2.1 Down-neighborhood Optimality

FK constraint is the most crucial feature of the relational model, yet it brings new

challenges compared with tuple-DP. First, any sensitivity-based framework loses its utility.

Give the above query as an example. What’s the GSQ for this query? It is, unfortunately,

∞. This is because a customer, theoretically, could have an unbounded number of orders,

and adding such a customer to the database can cause an unbounded change in the

query result. A simple fix is to assume a finite GSQ, which can be justified in practice

because we may never have a customer with, say, more than a million orders. However, as

mentioned in Section 1.2.2, assuming such a GSQ limits the allowable database instances,

one tends to be conservative and sets a large GSQ. Then, how about LSQ(I) for some

8

specific database instance I. Unfortunately, LSQ(·) ≡ GSQ since for any I, we can always

add a customer with GSQ number of orders to get one neighboring instance I′. That

will also lead to neighborhood optimality losing its utility. Recall Definition 1.1.1, we

compare the Err(MQ, I) with the maximum between Err(M′
Q, I) and Err(M′

Q, I
′). Since

no mechanism can perform well in both I and I′, that is a too low requirement for I.

To address the issue, we first restrict the neighborhood by only considering down-

neighbors, which can be obtained only by removing individuals. The new notation is

called down-neighborhood optimality. Clearly, the smaller the neighborhood, the stronger

the optimality notion and down-neighborhood optimality does not consider those “bad

neighbors” formed by adding some heavy contributors. Similarly, the downward sensitivity

DSQ(I) is defined as how much the query answer changes if we delete one individual’s

information. Equivalently speaking, that is the largest contribution of any user in I to

Q. DSQ(·) can be shown to be 1-down-neighborhood optimal lower bound thus under

user-DP, our target is to design a DP mechanism with O(DSQ(·)) error.

1.2.2 SA Queries

Let’s first discuss SA queries. In fact, this type of queries is equivalent to the 1-

dimensional mean (sum) estimation problem, which is important for many machine learn-

ing tasks. Therefore, this problem attracts lots of attention from both database commu-

nity [57, 76] and statistics and machine learning community [1, 6, 7, 69, 62, 46].

The dominating solution is the truncation mechanism, which simply deletes all indi-

viduals with more than τ contributions to the query result before adding the noise, for

some threshold τ . After truncation, the query has sensitivity τ , so adding a noise of

scale τ is sufficient. A well-known issue for the truncation mechanism is the bias-variance

trade-off: In one extreme τ = GSQ, it degenerates into global sensitivity mechanism and

has a large variance; in the other extreme τ = 0, the truncation introduces a bias as large

as the query answer.

The issue of how to choose a near-optimal τ under DP has been extensively studied

[6, 7, 69, 62, 46]. However, all of them require a predefined GSQ and their error bounds

also depend on GSQ even though the dependencies may be in the log factors.

9

1.2.2.1 Our Contribution [30]

We propose the first solution to remove that assumption for answering SA queries

under user-DP. Besides, when the GSQ is given, the state-of-art error bound [46] is

O(DSQ(I) log1.5(GSQ)).2 We show this error can be improved.

Theorem 1.2.1. For any SA query Q under user-DP, there is an ε-DP mechanismMQ(·)

such that for any I, it runs in linear time and returns a Q̃(I) such that
∣∣∣Q̃(I)− Q̃(I′)

∣∣∣ =

O (DSQ(I) log log(DSQ(I))).

Thus, we obtain an exponential improvement even in the finite-domain case. Further-

more, we show that the optimality ratio cannot be better than O(log log T) for all I with

DSQ(I) = T .

1.2.3 SPJA Queries

Then, let’s move towards the SPJA queries. In this problem, all prior works focus on

self-join-free SJA queries, which can be transformed to a SA queries (see Section 5.2 for

a more formal statement). However, self-joins introduce another challenge. In particular,

all techniques to answer SA queries [6, 7, 69, 62, 46] for choosing a truncation threshold τ

critically rely on the fact that the individuals are independent, i.e., adding/removing one

individual does not affect the data associated with another, which is not true when the

query involves self-joins. In fact, when there are self-joins, even the truncation mechanism

itself fails, as illustrated in the example below.

Example 1.2.1. Suppose we extend the query given at the beginning of Section 1.2 to

the following one with a self-join:

Q := |Customer(CK) ⋊⋉ Supplier(SK) ⋊⋉ Orders(OK,CK) ⋊⋉ Lineitems(OK, SK)|.

This query counts the total number of lineitems, each of which corresponds to one cus-

tomer and supplier. This is like edge counting in a bipartite graph where the customers

are on the left while the suppliers are on the right.

Let I be an τ -regular graph (i.e., every vertex has degree τ) with N/2 left vertices

and right vertices. Let I′ be the neighboring instance, where we add a left vertex that

2All results stated in Section 1.2 hold with constant success probability.

10

connects to every existing right vertex. Note that in I′, all right vertices have degree τ+1.

Now truncating by τ fails DP: The query answer on I is τN/2, and that on I′ is 0 (all

right vertices are truncated). Adding noise of scale τ cannot mask this gap, violating the

DP definition.

The reason why the truncation mechanism fails is that it requires after truncation, the

query has the sensitivity bounded by τ , which does not hold in the presence of self-joins.

More fundamentally, this is due to the correlation among the individuals introduced by

self-joins. In the example above, we see that the addition of one node may cause the

degrees of many others to increase. For the problem of graph pattern counting under

node-DP, which can be formulated as a multi-way self-join counting query on the special

schema R = {Node(ID), Edge(src, dst)}, Kasiviswanathan et al. [55] propose an LP-

based truncation mechanism (to differentiate, we will call the truncation mechanism above

naive truncation) to fix the issue, but they do not study how to choose τ . As a result,

while their mechanism satisfies DP, there is no optimality guarantee in terms of utility.

In fact, if τ is chosen inappropriately, their error can be even larger than GSQ.

1.2.3.1 Our Contribution [27]

We start by studying how to choose a near-optimal τ in a DP manner in the presence

of self-joins. Here, we assume there is a predefined GSQ. Since one tends to set a large

GSQ as argued before, we must try to minimize the dependency on GSQ.

Our first contribution (Section 5.3) is a simple and general DP mechanism, called

Race-to-the-Top (R2T), which can be used to adaptively choose τ in combination with

any valid DP truncation mechanism that satisfies certain properties. In fact, it does

not choose τ per se; instead, it directly returns a privatized query answer with error at

most O(log(GSQ) log log(GSQ) ·DSQ(I)) for any instance I with constant probability. As

mentioned before, Ω(DSQ(I)) is down-neighborhood optimal lower bound. Thus, the error

of R2T is optimal up to logarithmic factors in GSQ.

However, as we see in Example 1.2.1, naive truncation is not a valid DP mechanism

in the presence of self-joins. As our second contribution (Section 5.4), we extend the

LP-based mechanism of [55], which only works for graph pattern counting queries, to

general queries on an arbitrary relational schema that uses the 4 basic relational opera-

tors: Selection (with arbitrary predicates), Projection, Join (including self-join), and sum

11

Aggregation. When plugged into R2T, this yields the first DP mechanism for answering

arbitrary SPJA queries in a database with FK constraints. For SJA queries, the utility is

instance-optimal, while the optimality guarantee for SPJA queries (Section 5.5) is slightly

weaker, but we argue that this is unavoidable.

Furthermore, the simplicity of our mechanism allows it to be built on top of any

RDMBS and an LP solver. To demonstrate its practicality, we built a system prototype

(Section 5.7) using PostgreSQL and CPLEX. Experimental results (Section 5.8) show that

it can provide order-of-magnitude improvements in terms of utility over the state-of-the-

art DP-SQL engines. We obtain similar improvements even over node-DP mechanisms

that are specifically designed for graph pattern counting problems, which are just special

SJA queries.

1.2.4 Multiple SJA Queries

Answering a single query is not very useful in practice. Thus it is natural to consider

the multi-query problem in relational databases, which includes group-by queries as an

important special case (i.e., each group corresponds to one query). Let Q = (Q1, . . . , Qd)

be the d SJA queries we wish to answer privately. We use the standard metric of root-

mean-square error (RMSE) to measure the utility:

∥Q̃(I)−Q(I)∥ =

√√√√ d∑
k=1

(Q̃k (I)−Qk(I))2,

or equivalently, the ℓ2 distance between the privatized query answers Q̃(I) and the true

answers Q(I), both taken as d-dimensional vectors. The notation ∥ · ∥ refers to the ℓ2

norm of a vector throughout the thesis. Similarly, GSQ and DSQ are also measured in ℓ2

norm.

Here, we will allow the SJA queries to contain arbitrary joins and selection predicates.

By advanced composition, we can allocate a privacy budget of Õ(1/
√
d) to each query

and invoke our single-query mechanism R2T. This leads to an error of Õ(
√
d · DSQk

(I))

for Qk, hence an RMSE of

Õ

√d ·
√√√√ d∑

k=1

DSQk
(I)2

 . (1.3)

12

Challenge/opportunity: Better than composition. We make the crucial observa-

tion that the error bound in (1.3) is not optimal. In Section 6.2, we show that the lower

bound for the multi-query problem is Ω̃
(√

d ·DSQ(I)
)

. Note that we have the following

relationship:

DSQ(I) ≤

√√√√ d∑
k=1

DSQk
(I)2 ≤

√
d ·DSQ(I).

Both inequalities are tight: The first inequality becomes an equality if the user with

the maximum contribution to Q happens to be the maximum-contribution user to every

Qk ∈ Q, and the second inequality becomes an equality if each user contributes to only

one query in Q. For typical database instances and queries (especially a group-by query),

the situation will be more towards the latter, i.e., each user contributes to a small number

of queries (groups), in which case the error bound of (1.3) can be a
√
d-factor away from

optimal. This creates a third challenge, or rather, an opportunity for the multi-query

problem, i.e., how to do better than privacy composition.

1.2.4.1 Our Contribution [28]

Our key insight is that answering all d queries as a whole can yield a much better

result. We start by considering multiple self-join-free SJA queries. We observe that

similar as 1 dimensional case, d such queries are equivalent to the sum (mean) estimation

problem in d dimensions, a problem that has been extensively studied in the machine

learning literature [46, 13, 49]. Restated in our terminology, their algorithms achieve the

optimal error of Õ
(√

d ·DSQ(I)
)

, modulo polylogarithmic factors. However, they are

all restricted to instances I in which no user has contribution more than GSQ for some

predefined GSQ, and the hidden logarithmic factors depend on GSQ. More precisely, the

best error obtained so far [46] is

O

(
DSQ(I) ·

(√
d+

√
log(GSQ) log log(GSQ)

)
·
√

log(1/δ)

)
. (1.4)

Our first result is the complete removal of the dependency on GSQ. Specifically, in Section

6.2 we design an algorithm that achieves an error of

O
(

DSQ(I) ·
(√

d log(1/δ) + log log(DSQ(I))
))

. (1.5)

13

Note that even assuming a finite GSQ, the error bound of (1.5) is better than (1.4) since

DSQ(I) < GSQ by definition. The key to obtaining this result is to find a near-optimal

truncation threshold r under an unbounded GSQ, and then the standard truncation mech-

anism can be applied.

Our main technical innovation is how to deal with self-joins. As mentioned in Sec-

tion 1.2.3, self-joins are difficult to handle, since they make the truncation mechanism fail

and to tackle self-joins, R2T [27] uses a series of linear programs (LPs). However, as we

explain in Section 6.3.1, these LPs do not work for multiple queries due to fundamental

reasons. Thereafter, we take a different approach to the multi-query problem, with the

first version of the algorithm running in exponential time, which is subsequently reduced

to polynomial using quadratically constrained quadratic programming (QCQP). We show

that this algorithm achieves an error of

O
(√

d ·DSQ(I) ·
√

log(1/δ) · (log log(DSQ(I)) + log(1/δ))
)
,

matching the lower bound up to polylogarithmic factors.

Finally, we built a system prototype that can accept a set of SJA queries consisting

of arbitrary joins, selection predicates, followed by aggregation. It can also automati-

cally rewrite a group-by query into such a set of SJA queries and answer them with our

query-answering mechanism. Experimental results demonstrate that our mechanism can

significantly outperform privacy composition combined with the state-of-the-art single-

query mechanism [27], especially on more skewed data and large d.

1.3 Organization

This thesis is organized as follows. The discussion of related work is given in Chapter 2.

In Chapter 3, we talk about our algorithm to answer SPJA queries under tuple-DP. Then,

our solutions for answering SA queries, SPJA queries, and multiple SJA queries under

user-DP are given in Chapter 4, 5, and 6 respectively. Finally, we give a conclusion in

Chapter 7.

14

CHAPTER 2

RELATED WORK

In the past several years, query answering under differential privacy [33, 32] has at-

tracted a lot of attention [43, 12, 72, 71, 78, 82, 24, 63, 65, 68, 70, 8, 48, 57, 76]. Early

works did not consider FK constraints, or equivalently, they adopt tuple-DP. Under tuple-

DP, nearly all known work focus on answering counting queries, where as mentioned, if

the query doesn’t have joins, then the global sensitivity is 1, so the query answer can be

released by just adding O(1) noise. The problem becomes much more challenging when

joins are present, because a single tuple may now affect many join results. A relatively

easy approach is to add constraints so as to reduce the global sensitivity. McSherry [63]

solves the problem by only restricting to one-to-one joins. Proserpio et al. [70] propose

wPINQ to extend the work of McSherry to support general equijoins: by assigning weights

to tuples and scaling down the weights, their algorithm ensures each tuple can at most

affect one on final counting result. However, this only works well when one tuple affects

a fixed number of results. Palamidessi and Stronati [68] add constraints on the attribute

range. Arapinis et al. [8] and Narayan et al. [65] consider functional dependencies and

cardinality constraints. In contrast, elastic sensitivity [48] and smooth sensitivity [67] do

not require any constraints on the join structure or the database but have either the low

utility or low efficiency. Our solution is the first one that has both high utility and high

efficiency.

Starting from [57], people began to consider user-DP modeled by FK constraints.

Under user-DP, self-join-free SJA queries [57, 76] are actually equivalent to SA queries,

which further equal to the sum (mean) estimation problem [6, 46, 30]. Besides, people

in statistic and statistics and machine learning community also studied mean estimation

under statistical setting [75, 49, 51, 45, 54, 19, 17, 20, 13, 5, 46, 50, 16, 60, 9, 56], where

data are drawn from some specific distributions. All these works are specifically designed

for the given family and to achieve pure-DP (with δ = 0) they must require a boundness

assumption. Our solution can be further extended to give a pure-DP statistical mean esti-

mator working on an arbitrary, unknown continuous distribution without any boundness

15

assumption [30]. When self-joins appear, our solution is the first one to handle it. Besides,

a consequent work [41] studies answering SJA queries with maximum aggregation. Their

algorithm can also be used to answer sum aggregation query while the error bound is a

little bit larger than us.

There are also a number works studying graph pattern counting queries under differen-

tial privacy [55, 15, 67, 81, 52, 22], which is an important special case of SJA queries. For

graph data, there are two DP policies: edge-DP [67, 15, 81, 52] and node-DP [55, 15, 22].

They correspond to tuple-DP and user-DP applied to the special schema R = {Node(ID),

Edge(src, dst)}, respectively.

All the aforementioned works answer a single query at a time. The multi-query prob-

lem has been studied extensively on a flat table under tuple-DP[34, 44, 73, 43, 12, 72, 78,

82, 66, 59, 14, 79, 80, 64, 74]. For a set of d arbitrary linear queries, advanced composition

or the d-dimensional Gaussian mechanism achieves Õ(
√
d) error for each query, which is

the best we can achieve for d < n, where n is the size of the table. For d > n, the optimal

error of each query is Õ(
√
n) [43]. For a set of queries with special structures, the error

can be further reduced [78, 34, 64]. Furthermore, [66, 59, 14] design mechanisms that are

optimal for any given query set.

16

Part I

Queries Answering under Tuple-level

Differential Privacy

17

CHAPTER 3

ANSWERING SPJA QUERIES UNDER
TUPLE-DP

As previously noted, the tuple-DP approaches focus on count aggregation. For the

purpose of convenience, we formulate JA queries as full conjunctive counting queries. Sub-

sequently, SJA queries and SPJA queries are expressed as full conjunctive counting queries

with predicates and non-full conjunctive counting queries with predicates, respectively.

3.1 Preliminaries

3.1.1 Conjunctive Queries

Let R be a database schema. A full conjunctive counting query (CQ) has the form

Q :=
∣∣R1(x1) ⋊⋉ · · · ⋊⋉ Rn(xn)

∣∣,
whereR1, . . . , Rn are relation names in R, and each xi is a set of arity(Ri) variables/attributes1.

We call each Ri(xi) an atom. We use [n] to denote {1, . . . , n}, and [i, j] = {i, . . . , j}. For

any E ⊆ [n], Ē = [n] − E. For a variable x, we use dom(x) to denote the domain of x.

For x = (x1, . . . , xk), let dom(x) = dom(x1) × · · · × dom(xk). Let var(Q) denote the

set of variables in Q.

When considering self-joins, there can be repeats, i.e., Ri = Rj. In this case, we

assume xi ̸= xj; otherwise one of the two atoms is redundant. Let I be a database

instance over R. For a relation name R ∈ R, let I(R) denote the relation instance of R.

We use Ii as a shorthand for I(Ri). I and the Ii’s are called physical instances. On the

other hand, we use Ii(xi) to denote Ii after renaming its attributes to xi. The Ii(xi)’s

are called the logical instances. Note that if Ri and Rj are the same relation name, then

Ii = Ij, but Ii(xi) ̸= Ij(xj), as Ii(xi) and Ij(xj) have different attributes. For a self-join-

free query, we may without loss of generality assume that xi = sort(Ri) for all i ∈ [n]

1If xi has constants, we can preprocess Ri(xi) in linear time so that only tuples that match these

constants remain.

18

so the logical instances are the same as the physical instances, but for queries with self-

joins, one physical relation instance may correspond to multiple logical relation instances.

This distinction makes the problem more difficult under DP, as the distance between two

logical instances may be larger than between the physical instances.

By rearranging the atoms, we may assume that all appearances of the same relation

name are consecutive. Suppose m distinct relation names are mentioned in Q, and for

i = 1, . . . ,m, Rli , . . . , Rli+1−1 are the same relation name (set lm+1 = n + 1). Let Di =

[li, li+1 − 1] and ni = li+1 − li, which is the number of copies of Rli mentioned in Q.

3.1.2 Differential Privacy in Relational Databases under Tuple-

DP

Differential privacy is already defined in (1.1). This notion can be applied to any

problem by properly defining the distance function d(·, ·). As a database may contain

both public and private relations, we use a more refined definition of d(·, ·). For two

relation instances over the same relation name I, I ′, we use d(I, I ′) to denote the distance

between I and I ′, which is the minimum number of tuples to change I into I ′. Note that

d(Ij, I
′
j) is the same for all j ∈ Di, for any i ∈ [m], as they are the same physical relation

instance.

We use Pm ⊆ [m] to denote the set of private physical relations, while P n = ∪i∈PmDi

is the set of private logical relations. Let mP = |Pm|, nP = |P n|. Two database instances

can only differ in the private relations, i.e., d(Ij, I
′
j) = 0 for every j ∈ P̄ n. In the DP

definition (1.1), we must use the distance between the physical database instances, i.e.,

d(I, I′) =
∑

i∈[m] d(Ili , I
′
li
). Note that the distance between the logical instances, namely∑

i∈[n] d(Ii(xi), I
′
i(xi)), can be larger than d(I, I′) when self-joins are present.

A simple but important observation is that a query with self-joins on instance {Ii}i
can be considered as a query without self-joins on instance {Ii(xi)}i. This allows us to

reuse some of the technical results from self-join-free queries to support self-join queries.

However, the critical difference is that this conversion enlarges the distance, while the DP

guarantee must hold with respect to the distance on the original, physical instance.

19

3.1.3 Sensitivity-based DP Mechanisms

The most common technique of achieving differential privacy is to mask the query

result by adding random noise drawn from a certain zero-mean probability distribution.

The noise level (i.e., the standard deviation of the distribution) should depend on the

difference between the query results on I and I′, which is captured by the notion of

sensitivity. The local sensitivity of Q at instance I is how much Q can change at most if

one tuple in I is changed, i.e.,

LSQ(I) = max
I′,d(I,I′)=1

|Q(I)−Q(I′)| . (3.1)

The global sensitivity of Q is

GSQ = max
I

LSQ(I).

It is well known that one can achieve ε-DP with Err(M, I) = O(GSQ) by drawing

noise from the Laplace distribution calibrated to GSQ/ε [33]. But unfortunately, the

global sensitivity of many queries can be very high as the max is taken over all instances

I. For an n-way join, the global sensitivity can be as high as O(Nn−1). On the other

hand, the local sensitivity is often much smaller in most real-world instances. However, as

observed in [67], local sensitivity cannot be used to scale the noise directly, since LSQ(I)

and LSQ(I′) can differ a lot on two neighboring instances I and I′. Very different amounts

of noise would be added to Q(I) and Q(I′), which breaches privacy.

3.1.3.1 Smooth Sensitivity

To address the issue, Nissim et al. [67] proposed smooth sensitivity. Similar with

local sensitivity, smooth sensitivity is also instance-dependent and usually much smaller

than global sensitivity. But different from local sensitivity, it eliminates abrupt changes

between neighboring instances, hence the name “smooth sensitivity”.

The smooth sensitivity is based on the local sensitivity at distance k, LS
(k)
Q , which is

defined as

LS
(k)
Q (I) = max

I′,d(I,I′)≤k
LSQ(I′).

Note that LS
(0)
Q (I) = LSQ(I) and ∀k ≥ 0,LS

(k)
Q (I) ≤ GSQ. In fact, LS

(k)
Q can be

20

equivalently defined as

LS
(k)
Q (I) = max

I′,d(I,I′)=k
LSQ(I′) (3.2)

if dummy tuples are allowed in database.

Definition 3.1.1. The β-smooth sensitivity of Q is

SSβ
Q(I) = max

k≥0
e−βkLS

(k)
Q (I). (3.3)

An important property of LS
(k)
Q is that for any I, I′ such that d(I, I′) = 1, and any

k ≥ 0, LS
(k)
Q (I) ≤ LS

(k+1)
Q (I′). This ensures the “smoothness” of SSβ

Q(·): SSβ
Q(I) and

SSβ
Q(I′) differ by at most a constant factor eβ on any two neighboring instances I and I′.

Computing the smooth sensitivity by definition in general takes exponential time.

Indeed, it has been shown that it is NP-hard to compute the smooth sensitivity for certain

functions [67]. By exploiting special properties of the problem at hand, the running time

can be reduced to polynomial; examples include the median, minimum spanning tree, and

triangle counting [67]. However, it is still an open problem whether the smooth sensitivity

of multi-way joins can be computed in polynomial time. In Section 3.2.4, we describe an

algorithm with running time NO(logN). Such a running time is said to be quasi-polynomial,

which is super-polynomial but sub-exponential. This suggests that computing the smooth

sensitivity for multi-way joins may not be NP-hard, although a polynomial-time algorithm

still remains elusive.

To address this issue, Nissim et al. [67] show that any smooth upper bound of SSβ
Q(·)

can be used. Specifically, let

ŜS
β

Q(I) = max
k≥0

e−βkL̂S
(k)

Q (I). (3.4)

It has been shown that as long as L̂S
(k)

Q (·) is an upper bound of LS)
(k)
Q (·) and satisfies the

property, that for any neighbors I and I′,

L̂S
(k)

Q (I) ≤ L̂S
(k+1)

Q (I′), (3.5)

then, ŜS
β

Q(·) follows the same “smoothness” property as SSβ
Q(·).

After obtaining an ŜS
β

Q(I)/SSβ
Q(I), adding noise to the query answer to achieve differ-

ential privacy is straightforward. In particular, Nissim et al. [67] describe the following

two mechanisms.

21

General Cauchy The general Cauchy distribution has pdf h(z) ∝ 1
1+|z|γ . It has

bounded variance for γ > 3. It is shown [67] that by setting β = ε
2(γ+1)

, adding noise

2(γ+1)
ε
· ŜS

β

Q(I) · η to Q(I) preserves ε-differential privacy, where η is drawn the general

Cauchy distribution. We use γ = 4, for which Var[η] = 1, and the noise level (i.e., the

standard deviation of the noise distribution) is thus 10
ε
· ŜS

β

Q(I).

Laplace The general Cauchy distribution has a heavy tail. Alternatively, one can use

the Laplace distribution, which has a better concentration. However, adding noise ac-

cording to the Laplace distribution only yields (ε, δ)-differential privacy. Specifically, one

can set β = ε
2 ln(2/δ)

and add noise 2
ε
· ŜS

β

Q(I) · η, where η is drawn from the Laplace

distribution. Since Var[η] = 2, the noise level is 2
√
2

ε
· ŜS

β

Q(I). Note that the noise level of

using the Laplace distribution may not be smaller than that of general Cauchy, because

for the same ε, the Laplace mechanism requires a smaller β, which in turn leads to a

larger ŜS
β

Q(I).

Note that the computation of ŜS
β

Q(I) and the subsequent noise calibration step are

both done internally; only the noise-masked query result will be published in the end.

3.2 Residual Sensitivity

3.2.1 Residual Queries and Boundaries

Given a CQ Q, its residual query on a subset E ⊆ [n] of relations is QE :=⋊⋉i∈E Ri(xi).

Its boundary, denoted ∂QE, is the set of attributes that belong to atoms both in and out

of E, i.e., ∂QE = {x | x ∈ xi∩xj, i ∈ E, j ∈ Ē}. The following notion plays an important

role in our development.

Definition 3.2.1 (Maximum boundary and witness). For a residual query QE on database

instance I, its maximum multiplicity over the boundary, or simply maximum boundary, is

defined as

TE(I) = max
t∈dom(∂QE)

|QE(I) ⋉ t|.

A witness tuple of the maximum multiplicity over the boundary, or simply a witness, of

22

𝑄

𝑄! : 𝐸 = {1,3}

𝑄! : 𝐸 = {1,2,3}

Figure 3.1: Residual query, boundary, maximum boundary, and witness.

QE is

tE(I) = arg max
t∈dom(∂QE)

|QE(I) ⋉ t|. (3.6)

Per convention, when E = ∅, QE is an empty query and QE(I) = {⟨⟩}, where ⟨⟩

denotes the empty tuple, thus T∅(I) = 1.

Example 3.2.1. Figure 3.1 illustrates these concepts using the query Q = R1(A,B,C) ⋊⋉

R2(D,E, F) ⋊⋉ R3(A,D) ⋊⋉ R4(C,F) on a specific database instance. The two residual

queries shown are for E = {1, 3} and E = {1, 2, 3}. For the first residual query, the

boundary, maximum boundary, and witness tuple are {C,D}, 2, and (c1, d1) respectively.

For the second one, those are {C,F}, 4, and (c1, f1).

Note that TE(I) can be computed by the following SQL query:

SELECT MAX(Boundary) FROM (3.7)

(SELECT COUNT(∗) AS Boundary FROM QE GROUP BY ∂QE)

It is a special case of an AJAR query [47], and can be computed in O(Nw) time, where

w is a particular notion of the width of the query. The exact definition of w is a bit

technical, but it is always a constant depending only on QE and ∂QE. Thus, TE(I) can

be computed in polynomial time. Furthermore, various optimizations are possible; we

discuss some of them in Section 3.6.2.

The following observations on the function TE(·) are immediate.

Lemma 3.2.1. For two instances I, I′ and any E ⊆ [n], if Ii(xi) = I ′i(xi) for all i ∈ E,

then TE(I) = TE(I′).

23

Lemma 3.2.2. For I, I′, if Ii(xi) ⊆ I ′i(xi) for all i ∈ E, then TE(I) ≤ TE(I′).

Notation Meaning

I, I′ Database instances

I1, . . . , In Physical relation instances

I1(x1), . . . , In(xn) Logical relation instances

QE Residual query

∂QE Boundary of QE

TE Maximum boundary of QE

tE Witness of QE

Ik The set of instances having distance k to I

s Distance vector used to describe

the distance between two instances

Sk The set of distance vectors such that

the total distance of all private relations is k

Is The set of instance differing from I with s

T̂E,s(I) An upper bound of TE(I′) for any I′ ∈ Is
GSQ The global sensitivity of Q

LSQ(I) The local sensitivity of instance I

LS
(k)
Q (I) The local sensitivity of at distance k from I

L̂SQ,s(I) An upper bound of LSQ(I′) for any I′ ∈ Is

L̂S
(k)

Q (I) An upper bound of LS
(k)
Q (I′) for any I′ ∈ Ik

RSβ
Q(I) Residual sensitivity of I

Table 3.1: Notation used in the paper.

3.2.1.1 Sensitivity of TE

The function TE(I) takes relation instances Ii, i ∈ E as input and outputs a count,

and its sensitivity is the maximum amount of change in TE(I) when I changes. Below, We

first bound the sensitivity of TE(I) when only one tuple is changed. Then, we move onto

the case where several tuples can change, but all the changes are in the same relation.

Finally, we consider arbitrary changes.

Lemma 3.2.3. Given any E ⊆ [n], i ∈ E, and two instances I, I′ such that d(Ii(xi), I
′
i(xi)) =

1, Ij(xj) = I ′j(xj) for all j ∈ E − {i}, we have |TE(I)− TE(I′)| ≤ TE−{i}(I).

Proof. I ′i(xi) can be different from Ii(xi) in three ways: insertion, deletion or change of a

tuple.

24

For the first case, we have TE(I′) ≥ TE(I) by Lemma 3.2.2. Suppose the extra tuple

in I ′i(xi) is t′.

Let tE(I′) be a witness of TE(I′) as defined in (3.6), and let

T̃E(I) = |QE(I) ⋉ tE(I′)|.

By definition, TE(I) ≥ T̃E(I), so

|TE(I)− TE(I′)| = TE(I′)− TE(I) ≤ TE(I′)− T̃E(I).

Now we bound TE(I′)− T̃E(I):

TE(I′)− T̃E(I)

=|QE(I′) ⋉ tE(I′)| − |QE(I) ⋉ tE(I′)|

=|(⋊⋉j∈E−{i} Ij(xj)) ⋊⋉ t′ ⋉ tE(I′)|

=|(⋊⋉j∈E−{i} Ij(xj)) ⋉ (t′ ⋊⋉ tE(I′)|. (3.8)

Note that ⋊⋉j∈E−{i} Ij is just QE−{i} and t′ ⋊⋉ tE(I′) does not have any attribute interior

to QE−{i}. So (3.8) is at most TE−{i}(I) by definition.

For the case where I′ has one less tuple than I is symmetric, we have

|TE(I)− TE(I′)| ≤ TE−{i}(I
′) ≤ TE−{i}(I),

where the last one is by Lemma 3.2.2.

For the third case where I ′i(xi) is obtained from I ′i(xi) by changing a tuple in I ′i(xi),

consider I ′′i (xi) = Ii(xi) ∩ I ′i(xi). From previous work, we can derive

|TE(I)− TE(I′)| ≤ TE−{i}(I
′′) ≤ TE−{i}(I),

where the last one is also by Lemma 3.2.2.

Lemma 3.2.4. Given any E ⊆ [n], i ∈ E and two instances I, I′ such that d(Ii(xi), I
′
i(xi)) =

k, Ij(xj) = I ′j(xj) for all j ∈ E − {i}, we have |TE(I)− TE(I′)| ≤ k · TE−{i}(I).

Proof. For the given I, I′, there is a sequence of instances I0, I1, . . . , Ik, such that I0 =

I, Ik = I′, while any two neighboring instances differ by one tuple in Ii(xi).

Based on Lemma 3.2.1 and Lemma 3.2.3, for every ℓ ∈ [k],

|TE(Iℓ−1)− TE(Iℓ)| ≤ TE−{i}(I
ℓ−1) = TE−{i}(I

0) = TE−{i}(I). (3.9)

Summing (3.9) over all ℓ proves the lemma.

25

Now, we consider the general case.

Lemma 3.2.5. Given any E ⊆ [n] and two instances I, I′, we have

|TE(I)− TE(I′)| ≤
∑

E′⊆E,E′ ̸=∅

(
TE−E′(I)

∏
i∈E′

d(Ii(xi), I
′
i(xi))

)
.

Proof. For any I, I′, there is a sequence of instances I0, I1, . . . , In such that I0 = I, In = I′,

while Iℓ−1 and Iℓ differ only in Iℓ, for ℓ ∈ [n]. More precisely, Iℓi (xi) = I ′i(xi) if i ≤ ℓ, and

Iℓi (xi) = Ii(xi) if i ≥ ℓ+ 1.

We will prove by induction that, for every ℓ = 0, 1, . . . , n,

|TE(Iℓ)− TE(I0)| ≤
∑

E′⊆E∩[ℓ],E′ ̸=∅

(
TE−E′(I)

∏
i∈E′

d(Ii(xi), I
′
i(xi))

)
, (3.10)

for any E ⊆ [n].

For the base case ℓ = 0, both sides of (3.10) are 0. For the inductive step, assume (3.10)

holds on ℓ−1 for any E. We will prove that it also holds on ℓ for any E. For any given E, we

divide the set {E ′ : E ′ ⊆ E ∩ [ℓ], E ′ ̸= ∅} into two subsets E1 = {E ′ : E ′ ⊆ E ∩ [ℓ], ℓ ∈ E ′}

and E2 = {E ′ : E ′ ⊆ E ∩ [ℓ− 1], E ′ ̸= ∅}, namely, E1 consists of E ′ that includes ℓ while

E2 consists of those that do not. Consider the following two cases:

The easy case is when ℓ /∈ E. In this case, E1 is empty, and by Lemma 3.2.1, TE(Iℓ) =

TE(Iℓ−1). Therefore,

|TE(Iℓ)− TE(I0)|

=|TE(Iℓ−1)− TE(I0)|

≤
∑
E′∈E2

(
TE−E′(I)

∏
i∈E′

d(Ii(xi), I
′
i(xi))

)
(induction hypothesis)

=
∑

E′∈E1∪E2

(
TE−E′(I)

∏
i∈E′

d(Ii(xi), I
′
i(xi))

)
,

as desired.

The harder case is when ℓ ∈ E. By Lemma 3.2.4, we have

|TE(Iℓ)− TE(Iℓ−1)| ≤ d(Iℓ(xℓ), I
′
ℓ(xℓ)) · TE−{ℓ}(I

ℓ−1). (3.11)

26

Define
∏

i∈E′ d(Ii(xi), I
′
i(xi)) = 1 if E ′ = ∅. From the induction hypothesis, we have

TE(Iℓ−1) ≤
∑

E′⊆E∩[ℓ−1]

(
TE−E′(I)

∏
j∈E′

d(Ij(xj), I
′
j(xj))

)
. (3.12)

Recall that the induction hypothesis holds for any E. In particular, we use E − {ℓ} in

place of E in (3.12), and plug it into (3.11):

|TE(Iℓ)− TE(Iℓ−1)|

≤d(Iℓ(xℓ), I
′
ℓ(xℓ))

∑
E′⊆(E−{ℓ})∩[ℓ−1]

(
TE−{ℓ}−E′(I)

∏
i∈E′

d(Ii(xi), I
′
i(xi))

)

=
∑

E′⊆E∩[ℓ−1]

TE−(E′∪{ℓ})(I)
∏

i∈E′∪{ℓ}

d(Ii(xi), I
′
i(xi))

=

∑
E′⊆E∩[ℓ],ℓ∈E′

(
TE−E′(I)

∏
i∈E′

d(Ii(xi), I
′
i(xi))

)

=
∑
E′∈E1

(
TE−E′(I)

∏
i∈E′

d(Ii(xi), I
′
i(xi))

)
. (3.13)

Now we can finish the inductive step:

|TE(Iℓ)− TE(I0)|

≤|TE(Iℓ)− TE(Iℓ−1)|+ |TE(Iℓ−1)− TE(I0)|

≤
∑
E′∈E1

(
TE−E′(I)

∏
i∈E′

d(Ii(xi), I
′
i(xi))

)
(by (3.13))

+
∑
E′∈E2

(
TE−E′(I)

∏
i∈E′

d(Ii(xi), I
′
i(xi))

)
(induction hypothesis)

=
∑

E′∈E1∪E2

(
TE−E′(I)

∏
j∈E′

d(Ij(xi), I
′
j(xi))

)
.

3.2.2 Local Sensitivity of CQs

Now, we show For any CQ Q, its local sensitivity is precisely characterized by the

TE(·)’s. Let’s first consider the self-join-free queries.

27

Lemma 3.2.6. For a CQ without self-joins,

LSQ(I) = max
i∈Pn

T{i}(I).

Proof. First, note that the definition of LSQ(I) in (3.1) can be rewritten as

LSQ(I) = max
i∈Pn

max
I′,d(I,I′)=1,d(Ii,I′i)=1

|Q(I)−Q(I′)|.

Consider any I′ with d(I, I′) = 1, d(Ii(xi), I
′
i(xi)) = 1. Similar as the proof of Lemma 3.2.3,

I ′i(xi) can be different from Ii(xi) in three ways: insertion, deletion, or change of a tuple

t′ ∈ dom(xi). In the first case, I ′i(xi) = Ii(xi) ∪ {t′}, t′ /∈ Ii(xi), so

|Q(I)−Q(I′)| = Q(I′)−Q(I)

= | ⋊⋉j∈[n],j ̸=i (Ij(xj) ⋉ t′)|.

Similarly, for the second case, I ′i(xi) = Ii(xi)− t′, t′ ∈ Ii(xi) and

|Q(I)−Q(I′)| = | ⋊⋉j∈[n],j ̸=i (Ij(xj) ⋉ t′)|.

Thus, over all I′ that differs from I by the insertion or deletion of a tuple in Ii(xi), we

have

max
I′
|Q(I)−Q(I′)|

= max

{
max
t′∈I
| ⋊⋉j∈[n],j ̸=i (Ij(xj) ⋉ t′)|,

max
t′∈dom(xi),t′ /∈I

| ⋊⋉j∈[n],j ̸=i (Ij(xj) ⋉ t′)|
}

= max
t∈dom(∂Q[n]−{i})

| ⋊⋉j∈[n],j ̸=i (Ij(xj) ⋉ t)|

=T[n]−{i}(I).

Finally, the third case can be handled using a similar argument as in the proof of

Lemma 3.2.3.

Summarizing the three cases, we have

max
I′,d(I,I′)=1,d(Ii(xi),I′i(xi))=1

|Q(I)−Q(I′)| = T[n]−{i}(I),

and

LSQ(I) = max
i∈Pn

max
I′,d(I,I′)=1,d(Ii(xi),I′i(xi))=1

|Q(I)−Q(I′)|

= max
i∈Pn

T[n]−{i}(I).

28

To extend this result to CQs with self-joins, we need to bound how much Q(I) can

change when multiple relations change simultaneously, as a change in one physical rela-

tion instance may correspond to changes in multiple logical relations when self-joins are

present. We first draw the conclusion for the self-join-free queries.

Lemma 3.2.7. Let Q be a CQ without self-joins, B ⊆ [n], B ̸= ∅, and let I, I′ be instances

such that d(Ij(xj), I
′
j(xj)) = 1 for all j ∈ B while d(Ij(xj), I

′
j(xj)) = 0 otherwise. Then

|Q(I)−Q(I′)| ≤
∑

E⊆B,E ̸=∅

TĒ(I).

Proof. For the given I, I′, there is a sequence of intermediate instances I0, I1, . . . , In such

that, I0 = I, In = I′, while Iℓ−1, Iℓ can only possibly differ in Iℓ(xℓ), ℓ = 1, 2, . . . , n. More

precisely, we set Iℓj (xj) = I ′j(xj) if j ≤ ℓ; otherwise Iℓj (xj) = Ij(xj).

Notice that, for all j /∈ B, Ij = Ij−1, that is

∣∣Q(Ij)| −Q(Ij−1)
∣∣ = 0.

For all j ∈ B, d(Ij, Ij−1) = d(Ijj (xj), I
j−1
j (xj)) = 1. By Lemma 3.2.6,

∣∣Q(Ij)−Q(Ij−1)
∣∣ ≤ T[n]−{j}(I

j−1).

Therefore,

|Q(I)−Q(I′)| =
∣∣Q(In)−Q(I0)

∣∣ ≤∑
j∈B

T[n]−{j}(I
j−1). (3.14)

Note that for a self-join-free query, Ii = Ii(xi). By Lemma 3.2.5, for all j ∈ B,

T[n]−{j}(I
j−1)

≤T[n]−{j}(I
0) +

∑
E⊆[n]−{j},E ̸=∅

(
T[n]−{j}−E(I0)

∏
t∈E

d(Ij−1
t (xt), I

0
t (xt))

)

=
∑

E⊆[n]−{j}

(
T[n]−{j}−E(I0)

∏
t∈E

d(Ij−1
t (xt), I

0
t (xt))

)

=
∑

E⊆B∩[j−1]

T[n]−{j}−E(I0) (3.15)

=
∑

E⊆B∩[j],j∈E

TĒ(I0). (3.16)

29

(3.15) is because, by definition, for Ij−1, I0, j ∈ B, d(Ij−1
t (xt), I

0
t (xt)) = 1 if t ∈ B∩ [j−1];

otherwise d(Ij−1
t (xt), I

0
t (xt)) = 0.

Plugging (3.16) into (3.14), we obtain

|Q(I)−Q(I′)| ≤
∑
j∈B

∑
E⊆B∩[j],j∈E

TĒ(I0) =
∑

E⊆B,E ̸=∅

TĒ(I).

Based on this and (3.1), we can derive an upper bound on LSQ(I) for CQs with self-

joins.

Theorem 3.2.1. For a CQ Q,

LSQ(I) ≤ max
i∈Pm

∑
E⊆Di,E ̸=∅

TĒ(I).

Remark Note that when self-joins are present, we can no longer obtain an exact formula

for LSQ(I) like for self-join-free queries in Lemma 3.2.6. This is precisely due to the fact

that self-joins induce changes in multiple logical relations that may interact in complex

manners.

3.2.3 Global Sensitivity of CQs

Because GSQ = maxI LSQ(I), a by-product of Theorem 3.2.1 is an upper bound on

GSQ under relaxed DP where the instance size N is public. This upper bound can be

much smaller than the trivial upper bound O(Nn−1) mentioned in Section 3.1.3 for many

CQs.

By Theorem 3.2.1, we have

GSQ ≤ max
I

max
i∈Pm

∑
E⊆Di,E ̸=∅

TĒ(I) ≤ max
i∈Pm

∑
E⊆Di,E ̸=∅

max
I
TĒ(I). (3.17)

Observe that maxI TĒ(I) is upper bounded by the maximum join size of the residual query

QĒ, when the logical relations of the same physical relation are allowed to be instantiated

differently and the domain size of each variable in ∂QE = ∂QĒ is set to 1, which is

equivalent to removing these variables. We can bound the maximum join size using the

AGM bound [11]. Together with (3.17) this yields an upper bound on GSQ.

30

Example 3.2.2. We illustrate how this is done on the triangle counting query Q =

|Edge(x1, x2) ⋊⋉ Edge(x2, x3) ⋊⋉ Edge(x1, x3)| on a single physical relation Edge. For

E = {3}, i.e., QĒ = Edge(x1, x2) ⋊⋉ Edge(x2, x3) and ∂QĒ = {x1, x3}, we have

max
I
TĒ(I) = max

I
max

t∈dom(x1,x3)
|Edge(x1, x2) ⋊⋉ Edge(x2, x3)|

≤max
I

max
t∈dom(x1,x3)

|Edge1(x1, x2) ⋊⋉ Edge2(x2, x3)|

= max
I

(Edge1(x2) ⋊⋉ Edge2(x2)).

=AGM(Edge1(x2) ⋊⋉ Edge2(x2)).

We can similarly derive a bound for other E’s. Note that when E consists of 2 relations,

maxI TĒ(I) ≤ 1. Thus,

GSQ ≤AGM(Edge1(x2) ⋊⋉ Edge2(x2))

+ AGM(Edge2(x3) ⋊⋉ Edge3(x3))

+ · · ·

=O(N).

Example 3.2.3. As a more complicated example, consider the path-4 counting query

Q = |Edge(x1, x2) ⋊⋉ Edge(x2, x3) ⋊⋉ Edge(x3, x4) ⋊⋉ Edge(x4, x5)|.

We have

GSQ ≤AGM(Edge2(x3) ⋊⋉ Edge3(x3, x4) ⋊⋉ Edge4(x4, x5))

+ AGM(Edge1(x1) ⋊⋉ Edge3(x4) ⋊⋉ Edge4(x4, x5))

+ AGM(Edge1(x1, x2) ⋊⋉ Edge2(x2) ⋊⋉ Edge4(x5))

+ · · ·

=O(N2).

In general, any join size upper bound can be plugged into (3.17). For example, when

degree information or functional dependencies are publicly available, tighter upper bounds

can be derived [42, 3]. Although DP mechanisms based on GSQ are not as accurate as

our RSβ
Q(·)-based mechanisms to be presented next, they can be computed in O(1) time

(excluding the time for computing Q(I)).

31

3.2.4 Smooth Sensitivity of CQs

In this section, we describe an NO(logN)-time algorithm for computing SSβ
Q(I) for CQs.

Recall the definition of SSβ
Q(I):

SSβ
Q(I) = max

k≥0
e−βkLS

(k)
Q (I).

First, we show that it is sufficient to consider k = 0, 1, . . . , 2(n−1)
β
· lnN . It is trivial to

see, LS
(k)
Q (I) ≤ (N + k)n−1. When k ≥ 2(n−1)

β
· lnN , we have e−βk · LS

(k)
Q (I) ≤ e−βk · (N +

k)n−1 ≤ 1, so it has no effects on the max.

Then, for each k, we need to compute

LS
(k)
Q (I) = max

I′∈Ik
LSQ(I′),

where Ik = {I ′ : d(I, I′) = k}. The domains of the attributes can be infinite, thus Ik is

also infinite. To resolve this issue, we show that we do not need to consider the entire

domains of the attributes, while some finite sub-domains are sufficient for computing

LS
(k)
Q .

For a given instance I and any attribute x, the active domain of x is domact(x) =

∪i∈[n]πxIi. For x = (x1, . . . , xk), let domact(x) = domact(x1) × · · · × domact(xk). Tao et

al. [76] show that when computing LSQ(I), only neighboring instances I, I′ that differ by

a tuple t ∈ domact(xi), i ∈ P n need to be considered. However, when computing LS
(k)
Q ,

we cannot only consider I′ that differ from I by k tuples in dom(xi), i ∈ P n. The reason

is that, these k tuples may correlate with each other through values not in the active

domains. To solve this issue, we add k values to domact(x) to form the k-extended active

domain for each attribute x:

d̂om
k

act(x) = domact(x) ∪ {a1, . . . , ak},

where a1, . . . , ak are k different values in dom(x)−domact(x). Similarly, let domact(x) =

domact(x1)×· · ·×domact(xk) for x = (x1, . . . , xk). We claim that when computing LS
(k)
Q ,

it is sufficient to consider

Ik = {I′ : I, I′ differ by k tuples in d̂om
k

act(xi)}.

32

Indeed, suppose I′ has tuples have value a′ on attribute x and a′ ̸∈ d̂om
k

act(x). Because

I′ has at most k tuples not in I, there must be an extra ai in d̂om
k

act(x) that is not used.

Then we can remap a′ to ai, which does not induce any structural change in I′. Note that

the size of |Ik| is at most O((N + k)mk), where m is the number of attributes. This is

NO(lnN) in terms of data complexity.

Then, we can calculate the SSβ
Q(I) as follows. For each k = 0, 1, . . . , 2(n−1)

β
· lnN , we

compute LS
(k)
Q (I). To compute LS

(k)
Q (I), we enumerate all I′ ∈ Ik , and use Theorem 3.2.1

to calculate LSQ(I′), hence LS
(k)
Q (I). Finally, we obtain SSβ

Q(I) by taking the maximum

of eβkLS
(k)
Q (I) over all k. The running time is still NO(lnN).

3.2.5 Deriving L̂S
(k)

Q (·)

In the last section, we show computing SSβ
Q(I) for CQs is not NP hard problem but

requires quasi-polynomial time. Here, we propose an efficient algorithm to approximate

it. As mentioned in Section 3.1.3.1, the key here is to derive an upper bound of LS
(k)
Q (I)

with smoothness property.

For any two instances I, I′, define their distance vector as

s = (d(I1, I
′
1), d(I2, I

′
2), . . . , d(In, I

′
n)).

For any s = (s1, . . . , sn), let Is = {I′ : d(Ij, I
′
j) = sj, j ∈ [n]} be the set of instances whose

distance vectors are s from I. Note that when self-joins are present, not any s ∈ Nn is a

valid distance vector. We must ensure sli = sli+1 = · · · = sli+ni−1, for any i ∈ [m]. Let Sk

be the set of valid distance vectors such that the total distance of all private relations is

k, i.e.,

Sk =

{
s :
∑
i∈Pm

sli = k; sj = 0, j ∈ P̄ n;∀i ∈ [m], j ∈ Di, sj = sli

}
.

Denote the set of instances at k distance from I as Ik = {I′ : d(I, I′) = k}, i.e.,

Ik = ∪s∈SkIs.

We now derive an upper bound of LS
(k)
Q (·) in terms of TE(·).

Lemma 3.2.8.

LS
(k)
Q (I) ≤ max

s∈Sk
max
i∈Pm

∑
E⊆Di,E ̸=∅

max
I′∈Is

TĒ(I′).

33

Proof. By (3.2), we have

LS
(k)
Q (I) = max

I′,d(I,I′)=k
LSQ(I′)

= max
I′∈Ik

max
i∈Pm

LSQ(I′)

≤max
I′∈Ik

max
i∈Pm

∑
E⊆Di,E ̸=∅

TĒ(I′) (3.18)

= max
s∈Sk

max
I′∈Is

max
i∈Pm

∑
E⊆Di,E ̸=∅

TĒ(I′)

= max
s∈Sk

max
i∈Pm

max
I′∈Is

∑
E⊆Di,E ̸=∅

TĒ(I′)

≤max
s∈Sk

max
i∈Pm

∑
E⊆Di,E ̸=∅

max
I′∈Is

TĒ(I′).

(3.18) follows Theorem 3.2.1.

Let T̂E,s(I) be an upper bound of maxI′∈Is TE(I′). Then

L̂S
(k)

Q (I) := max
s∈Sk

max
i∈Pm

∑
E⊆Di,E ̸=∅

T̂Ē,s(I
′), (3.19)

is clearly an upper bound of LS
(k)
Q (I).

Now, it remains to find a valid T̂E,s(I). By Lemma 3.2.5, we have for any E ⊆ [n] and

any I′ ∈ Is,

TE(I′) ≤ TE(I) +
∑

E′⊆E,E′ ̸=∅

(
TE−E′(I)

∏
j∈E′

sj

)
.

So we set T̂E,s(I) as

T̂E,s(I) :=
∑
E′⊆E

(
TE−E′(I)

∏
j∈E′

sj

)
, (3.20)

where we define
∏

j∈∅ sj = 1.

Finally, the residual sensitivity is defined as in (3.4) by setting L̂S
(k)

Q (I) as in (3.19):

RSβ
Q(I) = max

k≥0
e−βkL̂S

(k)

Q (I). (3.21)

However, in order for RSβ
Q(·) to be a valid DP mechanism, we need to show that

L̂S
(k)

Q (·) follows the smoothness property (3.5). To do so, we first derive a technical result:

34

Lemma 3.2.9. Given any self-join-free CQ, any E ⊆ [n], any i ∈ [n], two instances

I, I′ that differ by one tuple in Ri(xi), any two distance vectors s = (s1, . . . , sn) and

s′ = (s′1, . . . , s
′
n) such that

s′ = (s1, . . . , si−1, si + 1, si+1, . . . , sn),

we have ∑
E′⊆E

(
TE−E′(I)

∏
j∈E′

sj

)
≤
∑
E′⊆E

(
TE−E′(I′)

∏
j∈E′

s′j

)
.

Proof. If i /∈ E, then for any E ′ ⊆ E, j ∈ E − E ′, we have Ij(xj) = I ′j(xj). Thus

TE−E′(I) = TE−E′(I′) by Lemma 3.2.1. Meanwhile, sj = s′j for all j ∈ E ′. Therefore,∑
E′⊆E

(
TE−E′(I)

∏
j∈E′ sj

)
=
∑

E′⊆E

(
TE−E′(I′)

∏
j∈E′ s′j

)
in this case.

If i ∈ E, we divide the set {E ′ ⊆ E} into two subsets E1 = {E ′ : E ′ ⊆ E, i ∈ E ′} and

E2 = {E ′ : E ′ ⊆ E, i /∈ E ′}. Note that there is one-to-one correspondence between the

subsets in E1 and the subsets in E2, i.e., for any E ′ ∈ E2, E ′ ∪ {i} ∈ E1, and vice versa.

For any E ′ ∈ E1, we have i /∈ E −E ′, so TE−E′(I) = TE−E′(I′) by Lemma 3.2.1. Thus,

∑
E′∈E1

(
TE−E′(I)

∏
j∈E′

sj

)
=
∑
E′∈E1

(
TE−E′(I′)

∏
j∈E′

sj

)
. (3.22)

For any E ′ ∈ E2, we have i ∈ E−E ′. By Lemma 3.2.3, we have TE−E′(I) ≤ TE−E′(I′)+

TE−E′−{i}(I
′). Therefore,

∑
E′∈E2

(
TE−E′(I)

∏
j∈E′

sj

)

≤
∑
E′∈E2

(
(TE−E′(I′) + TE−E′−{i}(I

′))
∏
j∈E′

sj

)

=
∑
E′∈E2

(
TE−E′(I′)

∏
j∈E′

sj

)
+
∑
E′∈E2

(
TE−(E′∪{i})(I

′)
∏
j∈E′

sj

)

=
∑
E′∈E2

(
TE−E′(I′)

∏
j∈E′

sj

)
+
∑
E′∈E1

TE−E′(I′)
∏

j∈E′−{i}

sj

 . (3.23)

Note that the last step makes use of the one-to-one correspondence between E1 and E2.

35

Finally, based on (3.22) and (3.23), we have∑
E′⊆E

(
TE−E′(I)

∏
j∈E′

sj

)

≤
∑
E′∈E1

TE−E′(I′)(
∏
j∈E′

sj +
∏

j∈E′−{i}

sj)

+
∑
E′∈E2

(
TE−E′(I′)

∏
j∈E′

sj

)

=
∑
E′∈E1

TE−E′(I′)(si + 1)
∏

j∈E′−{i}

sj

+
∑
E′∈E2

(
TE−E′(I′)

∏
j∈E′

sj

)

=
∑
E′∈E1

(
TE−E′(I′)

∏
j∈E′

s′j

)
+
∑
E′∈E2

(
TE−E′(I′)

∏
j∈E′

s′j

)

=
∑
E′⊆E

(
TE−E′(I′)

∏
j∈E′

s′j

)
,

In order to handle self-joins, we need to extend Lemma 3.2.9 to the case where multiple

relations may differ.

Lemma 3.2.10. Given any self-join-free CQ, any E ⊆ [n], any B ⊆ [n], two instances

I, I′ that differ by one tuple in every Ri(xi), i ∈ B, and two distance vectors s = (s1, . . . , sn)

and s′ = (s′1, . . . , s
′
n) such that

s′i =

{
si + 1, i ∈ B;

si, i /∈ B,

we have ∑
E′⊆E

(
TE−E′(I)

∏
j∈E′

sj

)
≤
∑
E′⊆E

(
TE−E′(I′)

∏
j∈E′

s′j

)
.

Proof. Given B ⊆ [n], two instances I, I′ differing by one tuple in all Ri(xi), i ∈ B, we

define I0, I1, . . . , In and s0, s1, . . . , sn: for ℓ ∈ [0, n],

Iℓj (xj) =

{
I ′j(xj) j ∈ [ℓ]

Ij(xj) otherwise

and

sℓj =

{
s′j j ∈ [ℓ]

sj otherwise
.

36

It is trivial to see I0 = I, In = I′, s = s0 and s′ = sn. Recall for j ∈ [n]−B, Ij(xj) = I ′j(xj),

sj = s′j and for j ∈ B, d(Ij(xj), I
′
j(xj)) = 1 and s′j = sj + 1.

Therefore, for ℓ /∈ B, Iℓ−1 = Iℓ and sℓ−1 = sℓ. That is,

∑
E′⊆E

(
TE−E′(Iℓ−1)

∏
j∈E′

sℓ−1
j

)
=
∑
E′⊆E

(
TE−E′(Iℓ)

∏
j∈E′

sℓj

)
.

For ℓ ∈ B, Iℓ−1, Iℓ differ by one tuple in Rℓ(xℓ) and sℓ−1, sℓ only differ by sℓ = sℓ−1 +1.

Based on Lemma 3.2.9, we have

∑
E′⊆E

(
TE−E′(Iℓ−1)

∏
j∈E′

sℓ−1
j

)
≤
∑
E′⊆E

(
TE−E′(Iℓ)

∏
j∈E′

sℓj

)
.

Above all, for any ℓ ∈ [n],

∑
E′⊆E

(
TE−E′(Iℓ−1)

∏
j∈E′

sℓ−1
j

)
≤
∑
E′⊆E

(
TE−E′(Iℓ)

∏
j∈E′

sℓj

)
.

And finally,

∑
E′⊆E

(
TE−E′(I)

∏
j∈E′

sj

)
=
∑
E′⊆E

(
TE−E′(I0)

∏
j∈E′

s0j

)

≤
∑
E′⊆E

(
TE−E′(In)

∏
j∈E′

snj

)

=
∑
E′⊆E

(
TE−E′(I′)

∏
j∈E′

s′j

)

With Lemma 3.2.10, we can show the smoothness property of L̂S
(k)

Q (·) for CQs.

Theorem 3.2.2. For any CQ and any I, I′ such that d(I, I′) = 1, L̂S
(k)

Q (I) ≤ L̂S
(k+1)

Q (I′)

for any k ≥ 0.

Proof. Based on (3.19), we haveL̂S
(k)

Q (I) = maxs∈Sk maxi∈Pm

∑
E⊆Di,E ̸=∅ T̂[n]−E,s(I);

L̂S
(k+1)

Q (I′) = maxs∈Sk+1 maxi∈Pm

∑
E⊆Di,E ̸=∅ T̂[n]−E,s(I

′).

37

Recall formulation of ÊE,s(I) in (3.20). It is sufficient to show, for any s ∈ Sk, we can

find a s′ ∈ Sk+1 such that for any E ⊆ [n]

∑
E′⊆E

(
TE−E′(I)

∏
j∈E′

sj

)
≤
∑
E′⊆E

(
TE−E′(I′)

∏
j∈E′

s′j

)
(3.24)

Assume for I, I′ differs by tuple in relationRli , i ∈ Pm. That is, for all j ∈ Di, d(Ij(xj), I
′
j(xj)) =

1. Given s ∈ Sk, we construct a s′ such that

s′j =

{
sj + 1 j ∈ Di

sj otherwise
.

It is clear s′ ∈ Sk+1 and we show s′ meets the requirement in (3.24).

Recall that a query with self-joins can be considered as a self-join-free query on the

logical instance: Q as a self-join-free query on the logical instance and any I, I′ with

d(I, I′) = 1, d(Ili , I
′
li
) = 1 correspond to {Ij(xj)}j, {I ′j(xj)}i with d(Ij(xj), Ij(xj)) = 1 for

all j ∈ Di. Besides, recall, s and s′ only differ by s′j = sj + 1 for all j ∈ Di.

Finally, we derive,

∑
E′⊆E

(
TE−E′(I)

∏
j∈E′

sj

)
=
∑
E′⊆E

(
TE−E′({Ij(xj)}j)

∏
j∈E′

sj

)

≤
∑
E′⊆E

(
TE−E′({I ′j(xj)}j)

∏
j∈E′

s′j

)

=
∑
E′⊆E

(
TE−E′(I′)

∏
j∈E′

s′j

)
,

where the inequality follows from Lemma 3.2.10.

3.2.6 Computing RSβ
Q(·)

Recall that for any given k, L̂S
(k)

Q (I) can be computed in polynomial time since each

TĒ(I) is an AJAR/FAQ query [47, 4]. The last missing piece is to bound the range of

k that one has to consider when computing RSβ
Q(I) using (3.21). The following lemma

implies that we only need to consider k = 0, . . . , k̂ = O(1) when computing RSβ
Q(I).

38

Lemma 3.2.11. For any k ≥ k̂ = mp

1−exp(−β/maxi∈[m] ni)
,

e−βkL̂S
(k)

Q (I) ≤ e−β(k−1)L̂S
(k−1)

Q (I).

Proof. We expand e−βkL̂S
(k)

Q (I) with (3.19), (3.20)

e−βkL̂S
(k)

Q (I) = max
s∈Sk

max
i∈Pm

∑
E⊆Di,E ̸=∅

∑
E′⊆[n]−E

(
e−βkT[n]−E−E′

∏
j∈E′

sj

)
.

Now, we show when k ≥ mp

1−exp(−β/maxi∈[m] ni)
, for any s ∈ Sk there is an s′ ∈ Sk−1 such

that for any i ∈ Pm, ∑
E⊆Di,E ̸=∅

∑
E′⊆[n]−E

(
e−βkT[n]−E−E′

∏
j∈E′

sj

)

≤
∑

E⊆Di,E ̸=∅

∑
E′⊆[n]−E

(
e−β(k−1)T[n]−E−E′

∏
j∈E′

s′j

)
. (3.25)

Since s ∈ Sk, k ≥ mp

1−exp(−β/maxi∈[m] ni)
, there must exist one i′ ∈ [m], such that sli′ ≥

1
1−exp(−β/maxi∈[m] ni)

. Then, we define the s′ as

s′j =

{
sj − 1, j ∈ Di′ ;

sj, otherwise.

Then, to prove (3.25), it is sufficient to show for any E ′ ⊆ E ⊂ [n],

e−βkTE−E′(I)
∏
j∈E′

sj ≤ e−β(k−1)TE−E′(I)
∏
j∈E′

s′j. (3.26)

(3.26) can be simplified to ∏
j∈E′

sj ≤ eβ
∏
j∈E′

s′j,

which can be further reduced to ∏
j∈E′∩Di′

sj ≤ eβ
∏

j∈E′∩Di′

s′j,

since sj = s′j for j /∈ Di′ .

Since ∏
j∈E′∩Di′

sj
s′j
≤
(

1

1− 1
k

)maxi∈[m] ni

≤ (eβ/maxi∈[m] ni)maxi∈[m] ni = eβ,

we prove the claim.

39

Remark In actual implementation, we first compute TĒ(I) for all E ⊆ Di, E ̸= ∅. After

that, it only takes O(1) time to compute RSβ
Q(I) using formulas (3.19), (3.20), and (3.21).

Thus, the concrete computational complexity of RSβ
Q(·) for a CQ Q is O(Nwmax), where

wmax is the maximum AJAR/FAQ width [47, 4] of the residual queries of Q.

3.3 Neighborhood Optimality

In this section we prove Theorem 1.1.1. This is done in three steps: We first derive a

sufficient condition for SSβ
Q(·) to be an r-neighborhood lower bound. Next, we show that

this condition holds for full CQs with r = O(1). Finally, we show that RSβ
Q(·) is at most

a constant factor larger than SSβ
Q(·),

3.3.1 General Neighborhood Lower Bounds

We first develop two general neighborhood lower bounds that hold for arbitrary queries

(not necessarily CQs), one based on LS
(k)
Q (·) while the other based on SSβ

Q(·). These lower

bounds hold for an arbitrary query Q with vectored outputs. We start with an observation

from [77]:

Lemma 3.3.1 ([77]). For any ε-DP mechanism M′(·) and any instance I, there exists

an I′ with d(I, I′) ≤ 1 such that

Pr

[
|M′(I′)−Q(I′)| ≥ LSQ(I)

2

]
≥ 1

1 + eε
.

This implies that LSQ(·) is an 1-neighborhood lower bound, i.e.,

max
I′:d(I,I′)≤1

Err(M′, I′) ≥ 1

2
√

1 + eε
· LSQ(I), (3.27)

for any I and any M′. We generalize this result, showing that LS
(r−1)
Q (·) is an r-

neighborhood lower bound:

Lemma 3.3.2. For any I, any ε-DP mechanismM′, and any r ≥ 1,

max
I′:d(I,I′)≤r

Err(M′, I′) ≥ 1

2
√

1 + eε
· LS

(r−1)
Q (I). (3.28)

40

Proof. For any I, we need show that there exists an I′ in its r-neighborhood such that

Err(M′, I′) ≥ 1

2
√

1 + eε
· LS

(r−1)
Q (I).

For any r ≥ 1, let

I∗ = arg max
I′,d(I,I′)≤r−1

LSQ(I′).

By Lemma 3.3.1, for any ε-DP mechanismM′(·), there exists an I′ with d(I∗, I′) ≤ 1 such

that

E
[
(M′(I′)−Q(I′))2

]
≥ 1

1 + eε
·
(

LSQ(I∗)

2

)2

,

so

Err(M′, I′) ≥ 1

2
√

1 + eε
· LSQ(I∗) =

1

2
√

1 + eε
· LS

(r−1)
Q (I).

Since d(I, I∗) ≤ r − 1 and d(I∗, I′) ≤ 1, we have d(I, I′) ≤ r, i.e., I′ is in the r-

neighborhood of I, as desired.

Note that (3.27) is the special case of (3.28) with r = 1.

Remark Previously, Asi and Duchi [10] also derive a neighborhood lower bound. Here,

we show that our lower bound is always no worse than theirs for ε = O(1), while can

be polynomially better for certain queries. Furthermore, their lower bound requires a

technical condition on Q while our lower bound holds for an arbitrary Q.

The r-neighborhood lower bound by Asi and Duchi (Lemma C.1 in [10]), when spe-

cialized to the 1-dimensional case, is as follows. Given a query Q, for any k and any

instance I, define

ω(I, r) := max
I′,d(I,I′)≤k

|Q(I)−Q(I′)|.

If {Q(I′) : d(I, I′) ≤ k} contains an interval of length c · ω(I, k) for some c > 0 and all

k ≤ r, then

max
I′:d(I,I′)≤r

Err(M′, I′) ≥ c

16
max
k≤r

e−εkω(I, k). (3.29)

Our lower bound, which does not require any condition on Q, is

max
I′:d(I,I′)≤r

Err(M′, I′) ≥ 1

2
√

1 + eε
· LS

(r−1)
Q (I). (3.30)

41

Next we compare (3.29) and (3.30). By the definition of LS
(k)
Q (I) and ω(I, k), we have

ω(I, k) ≤
∑

0≤k′≤k−1

LS
(k′)
Q (I) ≤ k · LS

(k−1)
Q (I).

Then,

(3.29) ≤ c

16
max
k≤r

(e−εk · k · LS
(k−1)
Q (I)) ≤ c

16
·max

k≤r
(ke−εk) · LS

(r−1)
Q (I),

which is asymptotically upper bounded by (3.30) as long as

ke−εk ≤ O

(
1√

1 + eε

)
,

which is true when ε = O(1).

On the other hand, the gap between (3.29) and (3.30) can be poly(N). Consider the

Median query with a constant ε. Let I consist of logN copies of 0.5, while the remaining

entries are half 0 and half 1. For any r ≥ logN , our lower bound (3.30) is LS
(r)
Q (I) = 0.5,

while their lower bound (3.29) is

max
k≤r

e−εkω(I, k) ≤ e−ε logN · 0.5 = 1/NΩ(1).

Nevertheless, Lemma C.1 in [10] yields better lower bounds for high-dimensional

queries.

To show that SSβ
Q(·) is an r-neighborhood lower bound, we need a condition on LS

(k)
Q (·),

that they do not grow more than exponentially quickly when k ≥ r.

Lemma 3.3.3. Given any ε, β > 0 and any instance I, if for some r ≥ 1 (possibly

depending on β and I),

LS
(k)
Q (I) ≤ eβkLS

(r−1)
Q (I), (3.31)

for any k ≥ r, for any ε-DP mechanismM′,

max
I′:d(I,I′)≤r

Err(M′, I′) ≥ 1

2
√

1 + eε
· SSβ

Q(I).

Proof. Consider any I. When k < r,

e−βkLS
(k)
Q (I) ≤ LS

(k)
Q (I) ≤ LS

(r−1)
Q (I),

42

where the second inequality follows from the definition of LS
(k)
Q (I) in (3.2).

When k ≥ r, from the premise of the lemma, we have

e−βkLS
(k)
Q (I) ≤ e−βkeβkLS

(r−1)
Q (I) = LS

(r−1)
Q (I).

Therefore, for any k ≥ 0, e−βkLS
(k)
Q (I) ≤ LS

(r−1)
Q (I). So

SSβ
Q(I) = max

k≥0
e−βkLS

(k)
Q (I) ≤ LS

(r−1)
Q (I). (3.32)

Finally, combine (3.32) and Lemma 3.3.2, we prove the lemma.

Remark 1 Recall from Section 3.1.3 that β and ε are just a constant-factor apart, so

β is also a constant if ε is considered a constant.

Remark 2 The restriction of the growth rate is very mild, except that it also forbids

LS
(k)
Q (·) to go from zero to nonzero. This is why we impose this restriction only for k ≥ r.

For certain problems like Median, this requires a large r, which is actually unavoidable

since a large flat neighborhood will rule out r-neighborhood optimal mechanisms for small

r anyway, as we argued in Section 1.1.2.

Before considering CQs, as a warm-up, we apply Lemma 3.3.3 to the triangle counting

problem. Here, the instance I is a simple graph (i.e., no self-loops and multi-edges), and

the query Q returns the number of triangles in I.

Lemma 3.3.4. For the triangle counting problem, the condition in Lemma 3.3.3 holds

with r = max
{

3,
⌈
4 ln(1/β)

β

⌉}
.

Proof. Let V be the domain of vertices. For i, j ∈ V , let xi,j(I) = 1 if there is an edge

between vertex i and j in I, and 0 otherwise. Then the number of common neighbors of

vertices i, j is

ai,j(I) =
∑
k∈V

xi,k(I) · xj,k(I).

An exact formula for LS
(k)
Q (I), hence SSβ

Q(I), is given in [67] for the triangle counting

problem, but we only need the following upper and lower bound on LS
(k)
Q :

max
i,j∈V

ai,j(I) +
k − 1

2
≤ LS

(k)
Q (I) ≤ max

i,j∈V
ai,j(I) + k.

43

We will show that by setting r = max
{

3,
⌈
4 ln(1/β)

β

⌉}
, (3.31) holds for any I and k ≥ r.

Thus SSβ
Q(·) is O(1)-neighborhood optimal.

For k ≥ r, we have

LS
(r−1)
Q (I)eβk ≥max

i,j∈V
ai,j(I)e

βk +
r − 1

2
eβk

≥max
i,j∈V

ai,j(I) + eβk

≥max
i,j∈V

ai,j(I) + k

≥LS
(k)
Q (I).

The first equality is by the lower bound on LS
(k)
Q (I); the second inequality is because

eβk ≥ 1 and r ≥ 3; the third inequality eβk ≥ k follows from k ≥ r ≥ 4 ln(1/β)
β

and some

simple algebra; the last inequality is by the upper bound on LS
(k)
Q (I).

Note that the r needed in the lemma above is independent of I. Thus, SSβ
Q(·) is an

O(1)-neighborhood lower bound for the triangle counting problem, i.e., the previous SS-

based DP-mechanism for triangle counting [67] is O(1)-neighborhood optimal. This is

the first optimality guarantee for triangle counting under DP, while our main optimality

result is a vast generalization of this.

3.3.2 Neighborhood Lower Bound for CQs

To show that SSβ
Q(·) is an O(1)-neighborhood lower bound for CQs, we need to show

that the condition in Lemma 3.3.3 holds with some constant r. This requires an upper

bound on LS
(k)
Q (·), as well as a lower bound on LS

(r−1)
Q (·). For the upper bound on LS

(k)
Q (·),

we use the L̂S
(k)

Q (·) developed in Section 3.2.5. For the lower bound, we first consider the

case r = nP . Recall that nP = |P n| is the number of private logical relations.

Lemma 3.3.5. For any CQ, any instance I, and any E ⊆ P n, E ̸= ∅, we have

LS
(nP−1)
Q (I) ≥ TĒ(I).

Proof. We will construct an I′ from I such that d(I, I′) ≤ nP − 1 and LSQ(I′) ≥ TĒ(I).

Recall tĒ(I) is the witness of TĒ(I). Then, we write TĒ(I) as

TĒ(I) = | ⋊⋉i∈Ē (Ii(xi) ⋉ tĒ(I))|.
44

We construct the I′ as follows. First, we fix jE and iE such that jE ∈ E and jE ∈ DiE .

Then, we find a tuple t′ ∈ dom(∪i∈Exi) such that π∂QE
t′ = tĒ(I). Next, for each

j ∈ E − {jE}, we add πxj
t′ to Ij unless it already exists in Ij. Here, we at most add

|E| − 1 tuples. Since E ⊆ P n, d(I, I′) ≤ nP − 1 and LSQ(I′) ≤ LS
(nP−1)
Q (I). Besides, we

can ensure for each j ∈ E − {jE}, I ′j(xj) contains πxj
t′.

Therefore, it suffices to show LSQ(I′) ≥ TĒ(I). To do that, we will show by flipping

the tuple tjE = πxjE
t′ in I ′jE , Q(I′) will change by at least TĒ(I). Suppose tjE /∈ I ′jE . The

number of tuples changes by

|(⋊⋉j∈DiE
(I ′j(xj) ∪ tjE)) ⋊⋉ (⋊⋉j∈[n]−DiE

I ′j(xj))

− (⋊⋉j∈[n] I
′
j(xj))|

≥|(I ′jE(xj) ∪ tjE) ⋊⋉ (⋊⋉j∈[n]−jE I
′
j(xj))

− (⋊⋉j∈[n] I
′
j(xj))|

=|tjE ⋊⋉ (⋊⋉j∈[n]−jE I
′
j(xj))|

=|tjE ⋊⋉ (⋊⋉j∈E−jE I
′
j(xj)) ⋊⋉ (⋊⋉[n]−E I

′
j(xj))|

≥|πxjE
t′ ⋊⋉ (⋊⋉j∈E−jE πxj

t′) ⋊⋉ (⋊⋉j∈Ē Ij(xj))| (3.33)

=|t′ ⋊⋉ (⋊⋉Ē Ij(xj))|

=| ⋊⋉i∈Ē (Ii(xi) ⋉ tĒ(I))| = TĒ(I)

The (3.33) is because for each j ∈ E − {jE}, I ′j(xj) contains πxj
t′ and for j ∈ [n] − E,

Ij(xj) = I ′j(xj). For the case tjE ∈ I ′i, we can draw a similar conclusion.

Next, recall from equations (3.19) and (3.20) that L̂S
(k)

Q (I) is also defined in terms of

the TĒ(I)’s. Together with Lemma 3.3.5, this allows us to build a connection between

L̂S
(k)

Q (I) and LS
(nP−1)
Q (I):

Lemma 3.3.6. For any CQ Q, any instance I, and any k ≥ 1, we have

L̂S
(k)

Q (I) ≤ (4k)nP−1LS
(nP−1)
Q (I).

Proof. Based on (3.19) and (3.20), we have

L̂S
(k)

Q (I) = max
s∈Sk

max
i∈Pm

∑
E⊆Di,E ̸=∅

∑
E′⊆[n]−E

(
T[n]−E−E′(I)

∏
j∈E′

sj

)

= max
s∈Sk

max
i∈Pm

∑
E⊆Di,E ̸=∅

∑
E′⊆Pn−E

(
T[n]−E−E′(I)

∏
j∈E′

sj

)
(3.34)

45

The (3.34) is because for any s, sj = 0 for any j /∈ P n.

For above E and E ′, E ∪ E ′ ⊆ P n. Based on Lemma 3.3.5, we have T[n]−E−E′(I) ≤

LS
(nP−1)
Q (I). Besides, for any s ∈ Sk, since E ′ ⊆ P n−E,E ̸= ∅, we have

∏
j∈E′ sj ≤ knP−1.

Plug these into (3.34),

L̂S
(k)

Q (I) ≤max
s∈Sk

max
i∈Pm

∑
E⊆Di,E ̸=∅

∑
E′⊆Pn−E

(
LS

(nP−1)
Q (I)knP−1

)
≤max

s∈Sk
max
i∈Pm

∑
E⊆Di,E ̸=∅

(
2nP−1LS

(nP−1)
Q (I)knP−1

)
≤ max

s∈S(k)
max
i∈[m]

(2nP−12nP−1LS
(nP−1)
Q (I)knP−1)

=(4k)nP−1LS
(nP−1)
Q (I)

Lemma 3.3.6 almost meets the condition of Lemma 3.3.3, except that (4k)nP−1 is

not necessarily smaller than eβk. But as the former is a polynomial while the latter is

exponential, this is not an issue as long as k is larger than a constant.

Theorem 3.3.1. For any CQ Q, any ε, β > 0, there exist a constant r > 0 (depending

on Q, ε, β) such that for any I and any ε-DP mechanismM′,

max
I′:d(I,I′)≤r

Err(M′, I′) ≥ 1

2
√

1 + eε
· SSβ

Q(I).

Proof. We will show that

L̂S
(k)

Q (I) ≤ eβkLS
(r−1)
Q (I), (3.35)

for all k ≥ max
{

4, nP ,
⌈
2(nP−1)

β
ln 2(nP−1)

β

⌉}
.

By Lemma 3.3.6, for k ≥ 4, we have

L̂S
(k)

Q (I) ≤ (4k)nP−1LS
(nP−1)
Q (I) ≤ k2(nP−1)LS

(nP−1)
Q (I).

By setting

r := max

{
4, nP ,

⌈
2(nP − 1)

β
ln

2(nP − 1)

β

⌉}
,

46

We can show that (3.35) holds for any k ≥ r:

L̂S
(k)

Q (I) ≤k2(nP−1)LS
(nP−1)
Q (I)

≤eβkLS
(r−1)
Q (I).

The second inequality follow because when r ≥ nP , we have LS
(nP−1)
Q (I) ≤ LS

(r−1)
Q (I), and

when k ≥ 2(nP−1)
β

ln 2(nP−1)
β

, we have k2(nP−1) ≤ eβk.

3.3.3 Optimality of RSβ
Q(·)

To complete the proof of Theorem 1.1.1, we show that RSβ
Q(·) is at most a constant-

factor larger than SSβ
Q(·).

Lemma 3.3.7. For any CQ and any I, RSβ
Q(I) ≤

(
4(nP−1)
βe1−β

)nP−1

SSβ
Q(I).

Proof. Recall the definition of SSβ
Q(I) and RSβ

Q(I) in (3.3) and (3.21),

SSβ
Q(I) = max

k≥0
e−βkLS

(k)
Q (I),

RSβ
Q(I) = max

k≥0
e−βkL̂S

(k)

Q (I).

Let k∗ = arg max e−βkL̂S
(k)

Q (I), and define the function

g(k) = e−βk(4k)nP−1LS
(nP−1)
Q (I).

Setting its derivative to 0, we see that g(k) maximizes at kmax = nP−1
β

(even allowing k

to take fractional values). Thus

g(k) ≤ g(
nP − 1

β
). (3.36)

47

Therefore,

RSβ
Q(I) =e−βk∗L̂S

(k∗)

Q (I)

≤e−βk∗(4k∗)nP−1LS
(nP−1)
Q (I)

≤e−(nP−1)

(
4(nP − 1)

β

)nP−1

LS
(nP−1)
Q (I)

≤
(

4(nP − 1)

βe1−β

)nP−1

max
k≥0

e−βkLS
(k)
Q (I)

=

(
4(nP − 1)

βe1−β

)nP−1

SSβ
Q(I).

The first inequality follows from Lemma 3.3.6, and the second inequality is by (3.36).

3.3.4 Elastic Sensitivity

Elastic sensitivity [48], denoted as ESβ
Q(·), is the only other DP mechanism for CQs

with self-joins. It is also a version of ŜS(·), but defined using a different L̂S
(k)

Q (·). For

i ∈ [n],x ⊆ xi, let mf(x, Ii(xi)) be the maximum frequency in Ii(xi) on attributes x, i.e.,

mf(x, Ii(xi)) = maxt∈dom(x) |Ii(xi) ⋉ t|. For ESβ
Q(·), L̂S

(k)

Q (·) is defined as a product of a

number of maximum frequencies; please see [48] for the exact formula.

We give an example below showing that ESβ
Q(I) can be asymptotically larger than

GS. This means that ESβ
Q(·) is not even worst-case optimal (i.e., not N -neighborhood

optimal).

Example 3.3.1. Consider the path-4 query:

Q = |Edge(x1, x2) ⋊⋉ Edge(x2, x3) ⋊⋉ Edge(x3, x4) ⋊⋉ Edge(x4, x5)|.

We showed that GSQ = O(N2) in Example 3.2.3. Now consider the following instance I

on Edge relation (assume the domain is N):

I(Edge) ={(0, 1), (0, 2), . . . , (0,
N

2
),

(
N

2
+ 1, N + 1), . . . , (N,N + 1)}.

Note that mf(xi, E(xi, xi+1)) = mf(xi+1, E(xi, xi+1)) = N
2

for i = 1, 2, 3, 4. By the

formula in [48], we have L̂S
(0)

Q (I) = 4(N
2

)3 = N3

2
, thus

ESβ
Q(I) = max

k≥0
e−βkL̂S

(k)

Q (I) ≥ L̂S
(0)

Q (I) = Ω(N3).

48

Atoms Predicates Variables

𝑄

𝜕𝑄 !"
𝜕𝑄 !"

$

𝑄 !" 𝑄 !"
∘

Figure 3.2: QĒ, Q◦
Ē

, ∂Q1
Ē

and ∂Q2
Ē

.

3.4 CQs with Predicates

A CQ with predicates (CQP) has the form

Q := |σP1(y1)∧···∧Pκ(yκ)(R1(x1) ⋊⋉ · · · ⋊⋉ Rn(xn))|,

where each Pj : dom(yj) → {True,False} is a computable function for some yj ⊆

var(Q) = x1 ∪ · · · ∪ xn. By a slight abuse of notation, we also use P (y) to denote

the (possibly infinite) relation {t ∈ dom(y) | P (t)}. This way, a CQP can be written as

a normal CQ:

Q := |R1(x1) ⋊⋉ · · · ⋊⋉ Rn(xn) ⋊⋉ P1(y1) ⋊⋉ · · · ⋊⋉ Pκ(yκ)|. (3.37)

Note that the Pj(yj)’s are all public, since they only depend on the query and the domain,

not on the instance.

The current approach to dealing with a CQP under DP [48, 57, 29] is to evaluate

the CQP as given, but compute the sensitivity without considering the predicates. This

yields a valid DP mechanism, but loses optimality. To see this, just consider an extreme

case where a predicate always returns False. Then the query becomes a trivial query and

the optimal (under any notion of optimality) mechanism isM(·) ≡ 0, i.e., Err(M, I) = 0

for all I, but the sensitivity of the query without the predicate must be nonzero.

In this section, we show how to extend RSβ
Q(·) to CQPs while preserving its O(1)-

neighborhood optimality. The idea is simple, we just consider a CQP as a CQ as defined in

(3.37), so optimality immediately follows from Theorem 1.1.1. The issue, however, is how

49

to compute RSβ
Q(·) when some relations are infinite. In Section 3.4.1 we first give a general

algorithm, which may take exponential time, to compute RSβ
Q(·) for arbitrary predicates

under the technical condition of Theorem 1.1.2; in Section 3.4.2 we give a polynomial-

time algorithm for the case where all the predicates are inequalities or comparisons, which

proves the second part of Theorem 1.1.2.

3.4.1 General Predicates

The first observation is that, when the P (yj)’s are arbitrary (but still computable),

it is undecidable to check if a given CQP is a trivial query. Recall that if the query is

trivial, the optimal DP mechanismM is deterministic and achieves Err(M, I) = 0 for all

I; otherwise, the mechanism must be probabilistic. Since one cannot distinguish between

the two cases, optimal (under any notion of optimality) DP mechanisms do not exist. For

the undecidability result, just consider the simple CQP QM = |R(x) ⋊⋉ PM(x)|, where

PM(x) = True iff the Turing machine M terminates in less than x steps. Note that PM(x)

is decidable. However, it is easy to see that QM(·) ≡ 0 iff M does not halt.

However, the situation is not hopeless. Below we show how to compute RSβ
Q(I) for any

CQP if for any z ⊆ var(Q), the satisfiability of φ1∧· · ·∧φS is decidable, where each φi is

Pj(ui) for any j and ui is yj after replacing all variables not in z by any constants. This

is a very mild condition; in fact, the entire literature on constraint satisfaction problems

(CSPs) is devoted to designing efficient algorithms for determining the satisfiability of

φ1 ∧ · · · ∧ φS when the φi’s take certain forms, and finding a satisfying valuation for z, if

one exists.

It suffices to show how to compute TĒ(I) for any E ⊆ P n. Since all the predicates

correspond to public relations, the residual query has the form

QĒ = (⋊⋉i∈Ē Ri(xi)) ⋊⋉ (⋊⋉j∈[κ] Pj(yj)).

We split the boundary variables as ∂QĒ = ∂q1
Ē
∪ ∂Q2

Ē
, where

∂Q1
Ē = {x | x ∈ xi ∩ xj, i ∈ E, j ∈ Ē},

and

∂Q2
Ē = {x | x ∈ xi ∩ yj, i ∈ E, j ∈ [κ]} − ∂q1Ē.

Let

Q◦
Ē = (⋊⋉i∈Ē Ri(xi))

50

be the CQ part of QĒ.

Example 3.4.1. Figure 3.2 illustrates these concepts with the query

Q =|R1(x1, x2, x3) ⋊⋉ R2(x3, x4, x5) ⋊⋉ R3(x5, x6, x7) ⋊⋉ R4(x1, x7, x8)

⋊⋉ P1(x2, x4) ⋊⋉ P2(x2, x8) ⋊⋉ P3(x3, x7) ⋊⋉ P4(x4, x6)|,

where we set E = {1}.

The following observations about the boundary variables are straightforward.

Lemma 3.4.1. For any CQP Q and any E ⊆ [n],

1. ∂Q2
Ē
⊆ y1 ∪ · · · ∪ yκ ⊆ ∂Q2

Ē
∪ var(Q◦

Ē
);

2. ∂Q1
Ē
⊆ var(Q◦

Ē
);

3. var(Q◦
Ē

) ∩ ∂Q2
Ē

= ∅.

Now, we look at how to compute TĒ(I):

TĒ(I) = max
t∈dom(∂QĒ)

|QĒ(I) ⋊⋉ t|

= max
t∈dom(∂QĒ)

|Q◦
Ē(I) ⋊⋉ (⋊⋉j∈[κ] Pi(yi)) ⋊⋉ t|

= max
t1∈dom(∂Q1

Ē
)

t2∈dom(∂Q2
Ē
)

∣∣Q◦
Ē(I) ⋊⋉ (⋊⋉j∈[κ] Pj(yj)) ⋊⋉ t1 ⋊⋉ t2

∣∣
= max

t1∈π∂Q1
Ē
Q◦

Ē
(I)

t2∈dom(∂Q2
Ē
)

∣∣Q◦
Ē(I) ⋊⋉ (⋊⋉j∈[κ] Pj(yj)) ⋊⋉ t1 ⋊⋉ t2

∣∣ .
The last step is because only t1 ∈ π∂Q1

Ē
Q◦

Ē
(I) can join with Q◦

Ē
(I). Since |Q◦

Ē
(I)| is

bounded by O(Nn), the choices of t1 are limited. The difficulty is that t2 ∈ dom(∂Q2
Ē

)

has infinitely many choices. The idea is to flip the problem around. For any B ⊆ Q◦
Ē

(I),

we check if there exist t1, t2 such that

|B ⋊⋉ (⋊⋉j∈[κ] Pj(yj)) ⋊⋉ t1 ⋊⋉ t2| = |B|. (3.38)

This is equivalent to checking if tB ⋊⋉ t1 ⋊⋉ t2 can pass all predicates for every tB ∈ B.

Since ∂Q1
Ē
⊆ var(Q◦

Ē
), for each tB ∈ B, t1 must be π∂Q1

Ē
tB. Thus the problem boils down

to deciding if ∧
tB∈B,j∈[κ]

Pj(yj(tB)) (3.39)

51

is satisfiable, where yj(tB) denotes yj after replacing its variables by the corresponding

constants if they appear in tB. Note that free variables in (3.39) are z = ∂Q2
Ē

. This

is precisely the technical condition we impose on the predicates. Finally, we enumerate

all B, and return the maximum |B| for which (3.39) is satisfiable. This proves the first

part of Theorem 1.1.2. However, this algorithm runs in exponential time since there are

2|Q◦
Ē
(I)| = 2poly(N) B’s that need to be considered.

3.4.2 Comparison and Inequality Predicates

For CQPs where the predicates are inequalities or comparisons, we may without loss

of generality assume that the domain of all attributes in y1 ∪ · · · ∪ yκ is Z. We show in

this subsection how to reduce the running time of the algorithm to poly(N) in this case.

Let ρ = |∂Q2
Ē
|. Then t2 takes values from Zρ. The key to an efficient algorithm is thus

to reduce this domain, and then apply the algorithm in [47, 4].

To reduce the domain of t2, one natural idea is to only consider the active domain [2].

Let Z∗(I) be the set of integers appearing in I on attributes y1∪· · ·∪yκ, and let Z∗(Q) be

the set of integers appearing in the predicates of q. Then the active domain is Z∗(Q, I) =

Z∗(Q) ∪ Z∗(I) ∪ {−∞,∞}. However, only considering t2 ∈ (Z∗(Q, I))ρ is not enough as

seen in the following example.

Example 3.4.2. Following Example 3.4.1, suppose P1(x2, x4) is x2 > x4, P2(x2, x8) is

x8 > x2, while ignoring P3 and P4. Consider the following instance I:

R1(x1, x2, x3) = {(0, 3, 0), (0, 5, 0)},

R2(x3, x4, x5) = {(0, 1, 0), (0, 2, 0), (0, 3, 0)},

R3(x5, x6, x7) = {(0, 0, 0)},

R4(x7, x8, x1) = {(0, 5, 0), (0, 6, 0), (0, 7, 0)}.

For E = {1}, TĒ(I) attains its maximum at x2 = 4, which is not included in Z∗(q, I).

This example shows that TĒ(I) may attain its maximum at some value between two

consecutive values in the active domain. Thus, we augment the active domain to Z+(q, I),

as follows. Let Z∗(Q, I, i) be the ith elements in Z∗(Q, I) in order. Z+(Q, I) includes

all elements in Z∗(Q, I, i), plus 2κ arbitrary distinct elements between Z∗(Q, I, i) and

Z∗(Q, I, i + 1) for all i ∈ [|Z∗(Q, I)| − 1]. If there are less than 2κ elements between

Z∗(Q, I, i) and Z∗(Q, I, i+ 1), all elements in between are included.

52

We show that it suffices to use Z+(Q, I) as the domain of t2.

Lemma 3.4.2. When all the predicates are inequalities and comparisons,

TĒ(I) = max
t1∈π∂Q1

Ē
Q◦

Ē
(I)

t2∈(Z+(Q,I))ρ

∣∣Q◦
Ē(I) ⋊⋉ (⋊⋉j∈[κ] Pj(yj)) ⋊⋉ t1 ⋊⋉ t2

∣∣ . (3.40)

Proof. It is sufficient to show that, for any t2 ∈ Zρ, we can find a t′2 ∈ (Z+(Q, I))ρ such

that

|Q◦
Ē(I) ⋊⋉ (⋊⋉j∈[κ] Pj(yj)) ⋊⋉ t1 ⋊⋉ t2|

=|Q◦
Ē(I) ⋊⋉ (⋊⋉j∈[κ] Pj(yj)) ⋊⋉ t1 ⋊⋉ t′2|. (3.41)

We order the at most ρ distinct values in t2 as v1, v2, . . . , and map them to values in

Z+(Q, I) to obtain t′2, as follows. If vi ∈ Z∗(Q, I), we map vi to itself. For values strictly

between Z∗(Q, I, i) and Z∗(Q, I, i+1) for some i, we map them to the additional elements

in Z+(Q, I) between Z∗(Q, I, i) and Z∗(Q, I, i + 1) in an order-preserving fashion. Since

ρ ≤ 2κ, this is always possible.

It is easy to see that (3.41) holds after the above mapping. This is because the

attributes of t2 and t′2 only appear in the predicates and all the comparison/inequality

relationships remain unchanged.

Since Z+(Q, I) = O(N + κ) = O(N), we can simply materialize each Pj(yj) into

{t ∈ (Z+(Q, I))2 | Pj(t)}, which has size O(N2). Thus, evaluating (3.40) using the

algorithm in [47, 4] also takes polynomial time, and we have concluded the proof of the

second part of Theorem 1.1.2.

As a practical improvement, observe that if a variable y ∈ ∂Q2
Ē

is only involved in

inequality predicates, then it can always take a value such that all these inequalities

hold. Thus, there is no need to materialize these predicates. In particular, we arrive at

a simpler formula for computing TĒ(I) when all predicates are inequalities, e.g., graph

pattern counting queries.

Corollary 3.4.3. For a CQP Q where all predicates are inequalities,

TĒ(I) = max
t1∈dom(∂Q1

Ē
)

∣∣∣Q◦
Ē(I) ⋊⋉ (⋊⋉j∈[κ],yj⊆var(Q◦

Ē
) Pj(yj)) ⋊⋉ t1

∣∣∣ .
To compute TĒ(I), we compute Q◦

Ē
(I), apply all predicates Pj(yj)) for j ∈ [κ],yj ⊆

var(Q◦
Ē

)), do a count group-by ∂Q1
Ē

, and return the maximum count.

53

3.5 Non-full CQs

A non-full CQ has the form

Q := |πo (R1(x1) ⋊⋉ · · · ⋊⋉ Rn(xn)) |,

where o ⊆ x denotes the set of output variables.

Similarly, the current approach [48, 57, 29] simply computes the noise ignoring the

projection. This performs badly as the projection usually reduces the true count signifi-

cantly, so the noise becomes relatively much larger. In this section, we show how to add

projection into the residual sensitivity framework.

For any E ⊆ [n], define

oE = o ∩ (∪i∈Exi).

Note that o = o[n].

Given E ⊆ [n], the residual query with projection is

QE := πoE
(⋊⋉i∈E Ri(xi)).

The boundary variables ∂QE = {x|x ∈ xi ∩ xj, i ∈ E, j ∈ Ē} remain unchanged, but

the maximum boundary TE(I) and witness tE(I) are modified as

TE(I) = max
t∈dom(∂QE)

|πoE
(⋊⋉i∈E Ii(xi) ⋊⋉ t)|

and

tE(I) = arg max
t∈dom(∂QE)

|πoE
(⋊⋉i∈E Ii(xi) ⋊⋉ t)|.

If oE = ∅, there is always a t ∈ dom(∂QE) such that (⋊⋉i∈E Ii(xi)) ⋊⋉ t ̸= ∅, which

becomes {⟨⟩} after the projection, so TE(I) = 1.

Note that these definitions degenerate into the full-CQ case when o = var(Q).

We as before compute L̂S
(k)

Q (I) by (3.19), (3.20), and then RSβ
Q(I) by (3.21), but

using the new definition of TE(I) with projection. Below we show that RSβ
Q(·) is still

a valid ε-DP mechanism and it can be computed efficiently. Recall that the validity of

RSβ
Q(·) is based on (1) L̂S

(k)

Q (·) is an upper bound of LS)
(k)
Q (·); and (2) L̂S

(k)

Q (·) satisfies the

smoothness property (3.5). The first depends on Lemma 3.2.5 and Theorem 3.2.1 while

54

the second depends on Lemma 3.2.5. One can verify that, as long as Lemma 3.2.5 and

Theorem 3.2.1 hold for non-full CQs, the rest of the validity proof will go through. We

thus focus on verifying Lemma 3.2.5 and Theorem 3.2.1 on non-full CQs.

Lemma 3.5.1. For non-full CQs, Lemma 3.2.1, 3.2.2, and 3.2.5 still hold.

Proof. First, it is trivial to see, Lemma 3.2.1 and 3.2.2 are still valid. The validness of

Lemma 3.2.5 is based on the self-join-free version of Lemma 3.2.5. Therefore, it suffices

to prove the self-join-free version of Lemma 3.2.5.

We first show, for non-full CQs without self-joins, given any E ⊆ [n], i ∈ E, and two

instances I, I′ such that d(Ii(xi), I
′
i(xi)) = 1, Ij(xj) = I ′j(xj) for all j ∈ E − {i}, we have

|TE(I)− TE(I′)| ≤ TE−{i}(I).

There are three cases: I ′i is obtained from insertion, deletion or change a tuple t′ from

Ii. For the first case, if oE = ∅, TE(I′) = TE(I) = 1 thus

|TE(I′)− TE(I)| = 0 ≤ TE−{i}(I).

If oE ̸= ∅, define

T̃E(I) = |πyE
((⋊⋉i∈E Ii(xi)) ⋉ tE(I′))|

and have

|TE(I′)− TE(I)| = TE(I′)− TE(I) ≤ TE(I′)− T̃E(I).

Next, we bound TE(I′)− T̃E(I).

TE(I′)− T̃E(I)

=|πoE
((⋊⋉i∈E Ii(xi)) ⋉ tE(I′))| − |πoE

((⋊⋉i∈E I
′
i(xi)) ⋉ tE(I′))|

=|πoE
((⋊⋉j∈E−{i} Ij(xj)) ⋊⋉ t′ ⋉ tE(I′))|

=|πoE−{i}((⋊⋉j∈E−{i} Ij(xj)) ⋊⋉ t′ ⋉ tE(I′))| (3.42)

≤ max
t∈dom(∂QE−{i})

|πoE−{i}((⋊⋉j∈E−{i} Ij(xj)) ⋉ t)| (3.43)

=TE−{i}(I).

(3.42) is derived by fixing t′ will fix the values of attributes in xi. (3.43) is because the

attributes of t′ ⋊⋉ tE(I′) are divided into two parts, one is interior to Q[n]−(E−{i}) while the

other is ∂QE−{i}; the values of attributes in the first part will not affect the join between

t′ ⋊⋉ tE(I′) and ⋊⋉j∈E−{i} Ij(xj).

55

For the second case, we can draw the conclusion with the same idea. For the third

case, where I′ is achieved by changing one tuple from I, define their common part as I′′:
|TE(I)− TE(I′′)| ≤ TE−{i}(I

′′)

|TE(I′)− TE(I′′)| ≤ TE−{i}(I
′′)

TE(I′), TE(I) ≥ TE(I′′)

⇒|TE(I)| − |TE(I′)| ≤ TE−{i}(I
′′) ≤ TE−{i}(I). (3.44)

By now, we prove for CQs without self-joins, any I, I′ such that they only differ by one

tuple in R1(xi), the difference between TE(I) and TE(I′) is at most TE−{i}(I). Then, we

can follow the idea from Lemma 4.6 to 4.8 in our prior work [29] to prove the self-join-free

version of Lemma 3.2.5.

Theorem 3.5.1. For non-full CQs, Theorem 3.2.1 still holds.

Proof. As shown in the remark after Theorem 3.2.1, the validity of Theorem 3.2.1 is

based on Lemma 3.2.5 and 3.2.6. Since Lemma 3.2.5 has already been shown to be valid

for non-full CQs, it suffices to only show Lemma 3.2.6 holds: for non-full CQs without

self-joins, LSQ(I) ≤ maxi∈Pn T[n]−{i}(I). Recall

LSQ(I) = max
i∈Pn

max
I′:d(I,I′)=1,d(Ii(xi),I′i(xi))=1

|Q(I)−Q(I′)| .

Given I, I′ differing by one tuple in Ri(xi). I′ can be different from I in three ways:

insertion, deletion or change a tuple t′ ∈ dom(xi). In the first two cases

|Q(I)−Q(I′)|

=|πo(t′ ⋊⋉ (⋊⋉j∈[n]−{i} Ij(xj)))|

=|πo[n]−{i}(t′ ⋊⋉ (⋊⋉j∈[n]−{i} Ij(xj)))| (3.45)

≤ max
t∈dom(∂Q[n]−{i})

|πo[n]−{i}((⋊⋉j∈[n]−{i} Ij(xj)) ⋉ t)| (3.46)

=T[n]−{i}(I).

(3.45) is derived by fixing t′ will fix the values of attributes for xi. (3.46) is because xi

can be divided into two parts: ∂Q{i} and xi − ∂Q{i}; the first part is equal to ∂Q[n]−{i}

while the second one does not affect the join.

In the case where I′ is achieved by changing one tuple from I, we can use a similar

idea as Lemma 3.5.1 and get |Q(I)−Q(I′)| ≤ T[n]−{i}(I).

56

In terms of computation, we observe that TE(I) with projection is still an AJAR/FAQ

query, but now with 3 semiring aggregations (max,+,max), so it can still be com-

puted by the algorithm in [47, 4] in polynomial time. Furthermore, one can verify that

Lemma 3.2.11 still holds non-full queries, so it takes O(1) time to compute RSβ
Q(·) after

all the TE(I)’s have been computed.

Theorem 3.5.2. For any non-full CQ Q, RSβ
Q(·) is an ε-DP mechanism that can be

computed in poly(N) time.

Non-full CQs with predicates can be handled by combining the methods described

in this and Section 3.4. More precisely, for a non-full CQ with general predicates, we

add πoĒ
on both sides of (3.38); if the predicates are inequalities and comparisons, we

materialize each predicate and then apply the algorithm above. The resulting RSβ
Q(·) is

still ε-DP, and can be much smaller than that on the full CQ. However, the lower bound

Theorem 3.3.1 no longer holds for non-full CQs, thus RSβ
Q(·) is not O(1)-neighborhood

optimal. We complement this with the following negative result.

Theorem 3.5.3. For any ε > 0, any (r, c)-neighborhood optimal ε-DP mechanismM(·)

for the query Q := |πx1 (R1(x1, x2) ⋊⋉ R2(x2)) |, where R1 is the private relation, must

have cr2 ≥ N .

Proof. Let M(·) be as given. We will construct two instances I and I′ such that M(I)

and M(I′) must differ a lot. Suppose dom(x1) = dom(x2) = Z. The public relation R2

takes the same instance I2 = I ′2 = [r]. For the private relation R1, we set I1 = [N/r]× [r]

and I ′1 = [N] × {0}. Note that Q(I) = N/r and Q(I′) = 0. In addition, for any I′′ with

d(I, I′′) ≤ r, Q(I′′) = N/r. For any I′′ with d(I′, I′′) ≤ r, Q(I′′) ≤ r.

First consider I. The adversary sets M′(·) ≡ N/r, so Err(M′, I′′) = 0 for all I′′ in

the r-neighborhood of I. Since M(·) is (r, c)-neighborhood optimal, M(I) must output

N/r deterministically. As M(·) is ε-DP, M(·) must output N/r deterministically at all

instances. So its error on I′ is Err(M, I′) = N/r.

At I′, the adversary setsM′(·) ≡ 0. For any I′′ in the r-neighborhood of I′,M′(·) has

error at most Err(M′, I′′) ≤ r. Thus, we conclude that c ≥ N/r
r

, or cr2 ≥ N .

Thus, if one still desires c = O(1), r must be at least Ω(
√
N). We also remark that

this negative result holds even under relaxed DP, since only substitutions are used when

defining the neighborhoods in the proof.

57

3.6 Experiments

Our analysis in Section 3.3 shows that RSβ
Q(·) is O(1)-neighborhood optimal. At the

same time, ESβ
Q(·) does not have any optimal guarantee. In this section, we conduct

an experimental study on the actual gap on a collection of multi-way joins over both

benchmark and real-world datasets. We also investigate its implications to the noise

levels, as well as the computational overheads.

We have also tested wPINQ [70], the earliest work on multi-way join queries under

the same DP policy as ours. Our results confirm those reported in [48], that wPINQ has

worse utility than elastic sensitivity.

3.6.1 Setup

Datasets We use two datasets in our experiments: TPC-H and the Facebook ego-

network dataset. The TPC-H schema has many foreign key constraints. As our DP pol-

icy does not consider foreign key constraints, when a tuple is deleted in one relation, say

Customer, we might obtain a neighboring instance that violates the foreign key constraint

from Orders to Customer. To resolve this inconsistency, the correct way to interpret our

DP policy is the following. We conceptually create the following relations by projecting

the original relations to the join attributes. This results in the following 8 projected rela-

tions: Region(RK), Nation(RK, NK), Customer(NK, CK), Orders(CK, OK), Supplier(NK, SK),

Part(PK), PartSupp(SK, PK), Lineitem(SK, PK, OK). We abbreviate these relations as R, N,

C, O, S, P, PS, L, respectively. All relations except R and P capture relationships, e.g.,

Orders(CK, OK) stores which custom placed which order. We treat C, O, S, PS, L as private

relations. There are no foreign key constraints between these private relations, so our DP

policy will be well defined. Note that the same interpretation is used in the prior work

[48]. We generated datasets with scale factors ranging from 0.01 to 10; the one with scale

factor 1 contains about 7.5 million tuples.

The Facebook ego-network dataset is from SNAP [58], which contains 4, 039 nodes and

176, 467 directed edges. The nodes are organized as 193 “social circles”. We merged these

social circles into 5 “mega-circles”, and created five relations Ri(x, y), i = 1, . . . , 5, where

each Ri(x, y) contains all edges (x, y) that originate in the i-th mega-circle. In addition, we

create a relation R6(x, y, z) that consists of all triangles formed by edges in R1 or R2, i.e.,

58

𝑄!

𝑄"

𝑄#

𝑄$

𝑄% 𝑄&𝑄&

𝑄' 𝑄(

Figure 3.3: The join structure of queries.

R6(x, y, z) := (R1(x, y) ⋊⋉ R1(y, z) ⋊⋉ R1(z, x)) ∪ (R2(x, y) ⋊⋉ R2(y, z) ⋊⋉ R2(z, x)). The 6

relations have 40968, 55125, 28231, 22486, 19179, 6080904 tuples, respectively, and they

are all regarded as private relations. This data set models the scenario where different

types of relations exist among the entities, such as friendship, co-workers, co-authors,

family members, etc.

Queries For TPC-H data, we used Q7, Q9, and Q5 from the benchmark, but removed

projections, predicates, and group-by conditions, and their join structures are shown as

Q1, Q2, Q3 in Figure 3.3. For the Facebook ego-network dataset, we used 5 queries, shown

as Q4, . . . , Q8 in Figure 3.3. Note that all joins on the TPC-H data are foreign-key joins

(i.e., many-to-one), while those on the Facebook data are many-to-many joins.

Dataset TPC-H Facebook

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Query result 6,001,215 6,001,215 239,917 1,666,978,389 19,927 285,754 6,348,654 21,613

wPINQ output 8,680 9,770 385 54.2 131.4 44.1 23.8 183.6

Min Value 694 694 49 77,100,000 203 2,790 86,800 50

Residual Sensitivity (RSβ
Q) Max Value 51,900 52,000 51,800 301,000,000 1,410 54,500 2,050,000 51,300

Running Time(s) 27.6 53.6 48.6 2.96 1.68 4.71 18.1 20.1

Min Value 1,740 2,140 175,000,000 25,500,000,000 219,000 110,000,000 55,000,000,000 561

Elastic Sensitivity (ESβ
Q) Max Value 4,950,000 1,870,000 263,000,000 25,500,000,000 219,000 110,000,000 55,000,000,000 2,440,000

Running Time(s) 7.55 9.02 6.73 0.300 0.611 0.628 5.725 8.78

Min 2.51× 3.08× 5,069× 84.8× 156× 2,010× 26,900× 11.2×
ESβ

Q/RSβ
Q Max 273× 67× 3,580,000× 330× 1,080× 39,300× 634,000× 178×

Avg 94.4× 27.8× 1,750,000× 286× 875× 27,300× 503,000× 80.6×
Running time: RSβ

Q/ESβ
Q 3.65× 5.94× 7.23× 9.86× 2.75× 7.50× 3.17× 2.29×

Table 3.2: Comparison among wPINQ, residual sensitivity and elastic sensitivity.

59

3.6.2 Implementation

Both residual sensitivity and elastic sensitivity can be computed easily by SQL. Elastic

sensitivity is computed by a UDF, after collecting the maximum frequencies of each

relation by SQL [48]. Similarly, for residual sensitivity, each TE(I) can be computed using

query (3.7). Then RSβ
Q(I) can be computed by formula (3.21) using a UDF. Thus, residual

sensitivity enjoys the same benefit of elastic sensitivity that it can be easily integrated into

any database system without any modification to the kernel. To automate this process,

we have built a system prototype on top of PostgreSQL.2 In our experiments, we used

PostgreSQL 11.5. For wPINQ, we follow the similar settings as [48]. All experiments are

conducted on a machine equipped with a 2.7 GHz Intel Core i7 and 16GB of memory.

However, we notice that PostgreSQL is not able to find the optimal query plan for

executing query (3.7). Thus, we wrote another query rewriter that uses the following rules

to rewrite a query in the form of (3.7). Our current query rewriter has only implemented

a subset of these rules (this should be the job of the query optimizer of the database!), so

one may still need some manual rewriting for the best performance.

Disconnected queries If QE consists of a few connected components, then QE is the

Cartesian product of the join results of each connected component. In this case, TE is

simply the product of the maximum boundaries of these connected components. It is

more efficient to evaluate (3.7) for each connected component separately.

Example 3.6.1. Consider query Q1 in Figure 3.3 with E = {N, C, L, S}. We have TE =

TE1 · TE2 where E1 = {N, C}, E2 = {L, S}.

Exploiting dependencies Suppose there is a functional dependency X → Y and

X ⊆ ∂QE, then it is clear that we can add all attributes in Y to the group-by attributes

∂QE without affecting the results of query (3.7). This step can be repeatedly applied. If

all attributes of QE can be added to ∂QE, then the result of (3.7) must be either 1 (when

QE is non-empty) or 0 (when QE is empty), provided there are no duplicated tuples in a

relation.

Example 3.6.2. Consider query Q3 in Figure 3.3 with E = {R, N, S, C}, and ∂QE =

{SK, CK}. We have SK→ NK (SK is the primary key of S) so we can add NK to ∂QE. Also,

2Code is available at https://github.com/hkustDB/ResidualSensitivity.

60

https://github.com/hkustDB/ResidualSensitivity

Figure 3.4: The rewriting of query of TE for Q3 with E = {R, N, C, S, L}.

NK→ RK (NK is the primary key of N), so we can also add RK to ∂QE. Now all attributes

of QE have been added to ∂QE and we only need to check whether QE is empty.

Aggregation push-down When evaluating (3.7), PostgreSQL would first compute the

join and then the aggregation, which is inefficient. We can push down the aggregation

as far as possible to reduce the execution cost. Joglekar et al. [47] present a general

framework for pushing down aggregations, which in turn defines the width w as mentioned

in Section 3.2.1.

Example 3.6.3. Consider query Q3 in Figure 3.3 with E = {R, N, C, S, L}, we can first add

attributes NK, RK to ∂QE by exploiting dependencies. Then, we rewrite (3.7) by pushing

down both COUNT and MAX. The query plans before and after this rewrite are shown

in Figure 3.4. The optimized query plan has w = 1 and it can be evaluated in linear

time. In practice, this reduces PostgreSQL’s execution time by roughly 100 times in our

experiments.

Incremental computation Finally, observe that the subquery in (3.7):

SELECT COUNT(∗) AS Boundary FROM QE GROUP BY ∂QE (3.47)

can be computed incrementally for E’s that differ by one relation. Thus, we can order

the computation of TE’s in a way so that previous results can be re-used.

Example 3.6.4. Consider query Q6 in Figure 3.3, where we need to compute TE1 , TE2 ,

TE3 for E1 = {R1}, E2 = {R1, R2}, E3 = {R1, R2, R3}, among others. First, the result

61

of executing (3.47) on QE1 is just R1 itself, with an additional column Boundary whose

values are all 1. Then we execute (3.47) on QE2 :

SELECT A, C COUNT(∗) AS Boundary FROM R1, R2

WHERE R1.B = R2.B GROUP BY A, C (3.48)

Next, we can run

SELECT A, D SUM((3.48).Boundary) AS Boundary FROM (3.48), R2

WHERE (3.48).C = R2.C GROUP BY A, D

to obtain the result of (3.47) on QE3 .

3.6.3 Experimental Results

Compare with wPINQ We test wPINQ on all queries and find it losses the utility

in all cases: as shown in Table 3.2, wPINQ outputs a result much less than 1% of the

real query result. That is because, the wPINQ ensures any tuple can at most effect one

counting query result by scaling down the tuples’ weights. Such operations can lead to

the output result much smaller than the real one and that becomes more problem with

the number of relations increase. The wPINQ performs well in the case where most tuples

affect no more than one query result or the case where tuples in the same relation have

the same degree(counting triangles incident on vertices with fixed degrees). However,

in our experiments, tuples join with any number of tuples. Besides, it has been shown

that wPINQ performs much worse than elastic sensitivity for non-histogram counting

queries [48].

Compare with elastic sensitivity Since elastic sensitivity (ESβ
Q) and residual sen-

sitivity (RSβ
Q) can be used in exactly the same manner to calibrate noise, where the

noise level is proportional to the sensitivity value, we can compare their sensitivity

values directly, given the same smoothing parameter β. We tried 7 different values

β = 0.01,0.02,0.04,0.08,0.16,0.32,0.64, and computed ESβ
Q and RSβ

Q for each of the queries

in Figure 3.3. For TPC-H queries, we used the dataset with scale factor 1. In Table 3.2,

we report the maximum, minimum, and the average value of the sensitivities over the β’s,

as well as their ratios. Note that both sensitivities decrease as β increases, but the ratio

ESβ
Q/RSβ

Q is not necessarily monotone.

62

First, RSβ
Q is always no more than ESβ

Q, while the gap can be very large for certain

queries. More importantly, the results reveal two fundamental reasons why RSβ
Q offers

a much tighter upper bound on the smooth sensitivity than ESβ
Q. The first one is the

data skewness. ESβ
Q is calculated based on multiplying the maximum frequencies in the

relations. In doing so, it makes the simple but very pessimistic assumption that these

most frequent attribute values can join, thereby shooting up the sensitivity tremendously.

If data is skewed, there are very few heavy hitters, and the chance that they can join is low.

On the other hand, RSβ
Q computes the actual join of the residual query, so the presence of

the heavy hitters will not affect the sensitivity, unless they can actually join. We see from

Table 3.2 that the ratio ESβ
Q/RSβ

Q is generally larger on the Facebook dataset, which is real

network data with high skewness. On the other hand, TPC-H data is more uniform. The

second situation where RSβ
Q is much smaller than ESβ

Q is on cyclic queries (Q3, Q5, Q6, Q7).

This is because the approach towards cyclicity taken by ESβ
Q, which just removes some

join conditions, is too simplistic. Removing these join conditions dramatically enlarges

the sensitivity, because these join conditions put restrictions on how join results can be

formed. On the other hand, RSβ
Q is defined in a unified manner over acyclic and cyclic

queries.

In Table 3.2, we also report the running times of these queries, which include executing

the query itself plus the time spent in computing the sensitivity. The time to add noise to

the query answer is negligible. We repeated each query 10 times and the average running

time is reported. We see that RSβ
Q indeed requires more time to evaluate, but considering

the huge improvement in the accuracy of the released query answers (which will be more

prominently compared next), the extra time is well spent.

Scalability To examine the effects as data scale changes, we used TPC-H datasets with

scale factors ranging from 0.01 to 10. To get a more intuitive sense, we calculated the

noise level from the computed sensitivity with both the Cauchy mechanism and Laplace

mechanism as described in Section 3.1.3.1. We fix the privacy parameter ε = 0.8. For the

Laplace mechanism, we set δ = 10−7, 2 × 10−8, 10−8, 2 × 10−9, 10−9, 2 × 10−10, 10−10 for

TPC-H dataset with different scale and set δ = 10−9/10−7 for Facebook dataset with R6

involved/uninvolved.

The noise levels for different data scales are plotted in the top row of Figure 3.5, in

63

𝑄! 𝑄" 𝑄#

Figure 3.5: Running times and noise levels of residual sensitivity and elastic sensitivity

with different noise mechanisms for different queries and data scales. R/E represents

the noise level calculated from residual sensitivity or elastic sensitivity, respectively, while

Cau/Lap denotes the respective noise mechanism.

which we also plot the actual query answer. Note that a noise level higher than the query

answer means that the noise-masked result would be basically useless. We see from the

results that the noise level from RSβ
Q is always below the query answer, while this is not

the case for ESβ
Q. In particular, for Q3, which is a cyclic query, the noise level of ESβ

Q is

always (much) higher than the query answer.

Another observation is that the noise level does not increase much with the data scale.

Intuitively, this is because sensitivity measures the impact of an individual tuple, which

in some sense is a “local” measure. The implication is that the released query answer is

more accurate, relatively speaking, on larger datasets, which is a nice property. We also

observe that the noise level from the Laplace mechanism increases more than that from

Cauchy. This is because we set smaller δ for larger dataset in the Laplace mechanism,

which can further bring impact on β, while β is independent of data size for Cauchy.

The running times are plotted in the second row of Figure 3.5. There is not much

surprise there, but it is nice to see that the growth rate of the time for computing the

RSβ
Q is more or less the same as that computing the query itself. This means that the cost

of evaluating query (3.7) (after appropriate rewriting) is in the same ballpark as that of

executing the query itself, while RSβ
Q needs to evaluate a constant number of such queries.

Privacy parameter ε Lastly, we conducted experiments to see how the privacy param-

eter ε affects various mechanisms. Recall that a smaller ε means higher privacy protection,

but also increases the noise level. In fact, it does so via two channels: (1) A smaller ε

64

𝑄! 𝑄" 𝑄# 𝑄$

𝑄% 𝑄& 𝑄' 𝑄(

Figure 3.6: The noise level of residual sensitivity and elastic sensitivity for various values

of ε.

increases the coefficient of the noise distribution; and (2) a smaller ε leads to a smaller

β, hence a higher sensitivity. We tried various values of ε from 0.1 to 12 and tested the

8 queries. The results are plotted in Figure 3.6. In the figures, we also plot the query

answer and 10% of that: A noise level below the query answer is considered to have utility

while having high utility if it is below 10% of the query answer.

The first message the figures convey is nothing but a reconfirmation of the results in

Table 3.2: The gap between the sensitivities directly translates to that between the noise

levels. On cyclic queries and/or data with high skewness (Q3, Q4, Q5, Q6, Q7), ESβ
Q does

not have utility even with ε is as large as 12, which is usually considered too high. For

easy queries (Q1, Q2, Q8), RSβ
Q is able to obtain utility or high utility at a much smaller

ε.

The more interesting observation is the comparison between the two noise mecha-

nisms. We see that, when combined with RSβ
Q, the two mechanisms have a crossover on

every query: the Cauchy mechanism seems to work better for smaller ε, while the Laplace

mechanism favors larger ε. This is precisely due to the two channels through which ε

affects the noise level. The coefficients of both noise distributions are inversely propor-

tional to ε, so the noise levels both decrease as ε increases. Meanwhile, ε also affects β

through the second channel, but its impact on β is larger for the Laplace mechanism. A

larger β reduces RSβ
Q, although this relationship is a complicated one. Anyhow, because

the Laplace mechanism is more sensitive to the change in ε, we see steeper curves in its

noise levels as we vary ε. On the other hand, this phenomenon is not obvious for ESβ
Q.

65

This is because ESβ
Q is not very sensitive to β on many queries (as can be seen from Table

3.2), which reduces the effects of the second channel. In fact, being sensitive to β is a

necessary property of any good upper bound on the smooth sensitivity, which itself is

highly sensitive to β. In the extreme case, if an upper bound is completely insensitive to

β, it just boils down to the global sensitivity.

66

Part II

Queries Answering under User-level

Differential Privacy

67

CHAPTER 4

ANSWERING SA QUERIES UNDER USER-DP

As previously discussed in Section 1.2.2, the user-DP framework is concerned with

sum aggregation queries. In this context, addressing SA queries is akin to solving a

one-dimensional sum estimation problem. This chapter focuses on the sum estimation

problem, while the discussion of the user-DP model in a relational database is deferred

to the subsequent section.

4.1 Preliminaries

4.1.1 Notation

Given a multiset I = {X1, . . . , XN} ∈ ZN , and radius is rad(I) = maxi |Xi|. For any

S ⊆ R, let |I ∩ S| = |{1 ≤ i ≤ N | Xi ∈ I ∩ S}|. Define [S] := {0, 1, . . . , S}. The sum

query is Sum(I) =
∑N

i=1Xi. We say I′ ⊆ I if I′ can be obtained by deleting several

elements from I. In this chapter, we use e as the base of log and define log(x) = 1 for any

x ≤ e, unless stated otherwise.

In this chapter, we use high-probability error, which is defined as

Err(M, I) = inf

{
λ ∈ R | Pr [|M(I)−Q(I)| ≤ λ] ≥ 2

3

}
.

4.1.2 More Knowledge of Differential Privacy

The DP definition has already been introduced in Section 1. The following two prop-

erties of DP are well-known:

Lemma 4.1.1 (Post Processing [33]). If M : X n → Y satisfies ε-DP and M′ : Y → Z

is any randomized mechanism, thenM′(M(I)) satisfies ε-DP.

Lemma 4.1.2 (Basic Composition [33]). If M1 : X n → Y satisfies ε1-DP and M2 :

X n × Y → Z satisfies ε2-DP, thenM2(D,M1(I)) satisfies (ε1 + ε2)-DP.

68

Algorithm 1: SVT.

Input: T , ε, Q1(I), Q2(I), . . .

1 T̃ ← T + Lap(2/ε);

2 for i← 1, 2, . . . do

3 Q̃i(I)← Qi(I) + Lap(4/ε);

4 if Q̃i(I) > T̃ then

5 Break;

6 end

7 end

8 return i;

A basic pure DP mechanism is the Laplace mechanism, which has already been dis-

cussed in Section 3.1.3.

DSQ(I) := max
I′,I∼I,I′⊆I

|Q(I)−Q(I′)| (4.1)

is the downward sensitivity of I. For sum estimation, DSSum(I) = rad(I). DSQ(I) can

be shown to be a per-instance lower bound. We defer the discussion of this to the next

section.

4.1.3 The Sparse Vector Technique

The Sparse Vector Technique (SVT) [36] has as input a (possibly infinite) sequence

of queries, Q1, Q2, . . . , where each query has global sensitivity 1, and a threshold T . It

aims to find the first query whose answer is above T . The detailed algorithm is given

in Algorithm 8. The SVT has been shown to satisfy ε-DP and enjoy the following error

guarantee, which says that it will not stop until it gets close to T .

Lemma 4.1.3 ([37]). Suppose there exists a k1 less than the length of the query sequence

such that for all i = 1, . . . , k1, Qi(I) ≤ T − 8
ε

log(2k1/β). Then with probability at least

1− β, SVT returns an i ≥ k1 + 1.

However, as will be clear later, we will actually need a complementary result that

guarantees that SVT will stop in time. The following lemma gives such a result. More

importantly, it also yields a utility guarantee on the returned query.

Lemma 4.1.4. If there exists a k2 such that Qk2(I) ≥ T+ 6
ε

log(2/β), then with probability

at least 1− β, SVT returns an i ≤ k2 such that Qi(I) ≥ T − 6
ε

log(2k2/β).

69

Proof. First, by the tail bound of the Laplace distribution, with probability at least 1− β
2
,

|T̃ − T | < 2

ε
log(2/β). (4.2)

And with probability at least 1− β
4
,

Q̃k2(I) > Qk2(I)−
4

ε
log(2/β). (4.3)

By a union bound over (4.2) and (4.3), together with the given condition Qk2(I) ≥ T +

6
ε

log(2/β), we have that with probability at least 1 − 3
4
β, Q̃k2(I) > T̃ , which implies

i ≤ k2.

To show Qi(I) ≥ T − 6
ε

log(2k2/β), we also require the following condition, which will

be shown to hold with probability at least 1− β
4
. Consider each j = 1, . . . , k2. We have

Pr

[
Q̃j(I) ≥ Qj(I) +

4

ε
log

2k2
β

]
= Pr

[
Lap

(
4

ε

)
≥ 4

ε
log

2k2
β

]
≤ β

4k2
.

By a union bound over all j, we have that, with probability at least 1 − β
4
, Q̃j(I) <

Qj(I) + 4
ε

log(2k2/β) for all j. By further combining with (4.2), we have Qi(I) ≥ T −
6
ε

log(2k2/β).

4.1.4 The Clipped Sum Estimator

A standard idea for dealing with an unbounded domain is to clip all values into a

bounded range [l, r]. Define

Clip (X, [l, r]) =

l, if X < l;

X, if l ≤ X ≤ r;

r, if X > r.

Let

Clip(I, [l, r]) = {Clip (Xi, [l, r]) | Xi ∈ D}.

Then the clipped sum estimator is

ClippedSum(I, [l, r]) = Sum(Clip(I, [l, r])).

It is obvious that ClippedSum(·, [l, r]) has global sensitivity r−l. Thus, ClippedSum(I, [l, r])+

Lap
(
r−l
ε

)
satisfies ε-DP.

70

4.2 Methodology

In this section, we design ε-DP mechanisms for estimating Sum(I). We will first obtain

r̃ad(I), a privatized rad(I), and then invoke the clipped sum estimator. It turns out that

the instance optimality ratio crucially depends on how well r̃ad(I) approximates rad(I).

4.2.1 Estimate Radius

We will show how to obtain a r̃ad(I) such that r̃ad(I) ≤ 2·rad(I) while [−r̃ad(I), r̃ad(I)]

covers all but O (log log(rad(I))) elements of I.

Let Count(D, x) = |D ∩ [−x, x]|. It is easy to see that Count(I, x)−N has the global

sensitivity 1 for any x, while rad(I) is exactly the smallest x such that Count(D, x) −

N ≥ 0. Thus, a natural idea is to feed the query sequence Count(D, x) − N for x =

0, 1, 2, 4, 8, . . . to SVT with a threshold of T = n. However, doing so suffers from the “late

stop” problem, i.e., SVT may stop at a r̃ad(I) that is too large due to the exponential

growth rate of x. On the other hand, reducing the growth rate increases the length

of the query sequence, degrading the utility of SVT. Inspired by Lemma 4.1.4, we use

T = −6 log(2/β)/ε so that SVT will stop at the “right” place. The details are shown in

Algorithm 7.

Algorithm 2: EstimateRadius.

Input: D, ε, β

1 ĩ =

SVT
(
−6

ε
log(2/β), ε,Count(D, 0)−N,Count(D, 20)−N,Count(D, 21)−N, . . .

)
;

2 if ĩ = 1 then

3 r̃ad(I) = 0;

4 else

5 r̃ad(I) = 2ĩ−2;

6 end

7 return r̃ad(I);

The privacy of EstimateRadius follows from that of the SVT and the post-processing

property of DP. We analyze its utility below:

Theorem 4.2.1. For any I ∈ ZN , with probability at least 1−β, EstimateRadius returns

71

Algorithm 3: InfiniteDomainSum.

Input: I, ε, β

1 r̃ad(I) = EstimateRadius(D, ε
2
, β
2
);

2 S̃um(I) = ClippedSum(I, [−r̃ad(I), r̃ad(I)]) + Lap
(

4 · r̃ad(I)/ε
)

;

3 return r̃ad(I);

a r̃ad(I) such that r̃ad(I) ≤ 2 · rad(I) and∣∣∣∣D ∩ [−r̃ad(I), r̃ad(I)
]∣∣∣∣ = O

(
1

ε
log (log (rad(I)) /β)

)
.

Proof. We consider two cases: rad(I) = 0 and rad(I) ∈ [2j−1, 2j] for some j ∈ N. In the

first case, Count(I, 0) = N . By Lemma 4.1.4, with probability at least 1 − β, we have

r̃ad(I) = 0, and both conclusions hold.

In the second case, Count(I, 2j) = N . Plugging in Lemma 4.1.4 with T = −6
ε

log(2/β)

and k2 = log2(2
j) + 2, we have, with probability at least 1− β,

r̃ad(I) ≤ 2j ≤ 2 · rad(I).

and

Count(I, r̃ad(I)) ≥ N − 6

ε
log(2/β)− 6

ε
log
(
2
(
log2(2

j) + 2
)
/β
)
.

4.2.2 Sum Estimation

With a good r̃ad(I), we can now do sum estimation over an infinite domain with

clipped sum. The algorithm is shown in Algorithm 3. Its privacy follows from basic

composition, while its utility guarantee directly follows Theorem 4.2.1 and tail bound of

Laplace distribution:

Theorem 4.2.2. Given ε, β, for any I ∈ ZN , with probability at least 1−β, InfiniteDomainSum

returns a S̃um(I) such that

∣∣∣S̃um(I)− Sum(I)
∣∣∣ = O

(
rad(I)

ε
log (log (rad(I)) /β)

)
.

72

Recall from Section 4.1.2, rad(I) is the instance-specific optimal lower bound. This

means that InfiniteDomainSum is optimal with an optimality ratio of c = O(log log(rad(I))/ε)

for constant β. Below, we show that this c is worst-case optimal in the finite-domain case.

In particular, it implies that the optimality ratio cannot be independent of I.

Theorem 4.2.3. For the empirical mean µ(I), given any ε, any integer H ≥ 1, and any

N > log log2(H)/ε, for any ε-DP mechanismM : [H]N → R, there exists I ∈ [H]N , such

that

Err(M, I) ≥ rad(I)

3ε
log log2(H).

Proof. We use a packing argument by constructing a sequence of log2(H) + 1 datasets:

I0,I1,. . . , Ilog2(H). I0 contains all 0’s. For each i = 1, . . . , log2(H), Ii is constructed by

changing log log2(H)/ε number of 0’s in I0 to 2i. It can be verified that

Sum(Ii) =
2i

ε
log log2(H). (4.4)

We argue that, for any ε-DP mechanism M, there exists at least one Ii such that

Err(M, Ii) ≥ rad(Ii)

3ε
log log2(H) =

2i

3ε
log log2(H). (4.5)

We prove this by contradiction. If (4.5) does not hold, then

1

3
≥Pr[M(I0) ̸= 0]

≥
∑

1≤i≤log2(H)

Pr

[
M(I0) ∈

(
2

3
· 2i · 1

ε
log log2(H),

4

3
· 2i · 1

ε
log log2(H)

)]
(4.6)

≥
∑

1≤i≤log2(H)

(
e−ε log(log2(H))/εPr

[
M(Ii) ∈

(
2

3
· 2i · 1

ε
log log2(H),

4

3
· 2i · 1

ε
log log2(H)

)])

≥ log2(H) · 1

log2(H)
· 2

3
(4.7)

=
2

3
,

which causes a contradiction. (4.6) is because the intervals
(
2
3
· 2i · 1

ε
log log2(H), 4

3
· 2i · 1

ε
log log2(H)

)
for all i = 1, . . . , log2(H) are disjoint. (4.7) follows from (4.4) and the hypothesis.

73

CHAPTER 5

ANSWERING SPJA QUERIES UNDER
USER-DP

5.1 Preliminaries

5.1.1 Database Queries

Follow the notations defined in Section 3.1.1. R is a database schema and a multi-way

join is

J := R1(x1) ⋊⋉ · · · ⋊⋉ Rn(xn), (5.1)

Let var(J) := x1 ∪ · · · ∪ xn. I is a database instance over R. Recall when self-joins

appear, there can be repeats, i.e., Ri = Rj. To avoid the confusion, we define physical

relation instance and logical relation instance (see Section 3.1.1 for more details). For

convenience, in this chapter, for any R ∈ R, the physical relation instance is I(R) and the

logical relation instance is I(R,x), where we rename the attributes I(R) to x. When there

are self-joins, one physical relation instance may have multiple logical relation instances;

they have the same rows but with different column (variable) names.

An JA or SJA query Q aggregates over the join results J(I). More abstractly, let

ψ : dom(var(J))→ N be a function that assigns non-negative integer weights to the join

results, where dom(var(J)) denotes the domain of var(J). The result of evaluating Q on

I is

Q(I) :=
∑

q∈J(I)

ψ(q). (5.2)

Note that the function ψ only depends on the query. For a counting query, ψ(·) ≡ 1; for

an aggregation query, e.g. SUM(A∗B), ψ(q) is the value of A∗B for q. And an SJA query

with an arbitrary predicate over var(J) can be easily incorporated into this formulation:

If some q ∈ J(I) does not satisfy the predicate, we simply set ψ(q) = 0.

Example 5.1.1. Graph pattern counting queries can be formulated as SJA queries.

Suppose we store a graph in a relational database by the schema R = {Node(ID),

74

Edge(src, dst)} where src and dst are FKs referencing ID, then the number of length-3

paths can be counted by first computing the join

Edge(A, B) ⋊⋉ Edge(B, C) ⋊⋉ Edge(C, D),

followed by a count aggregation. Note that this also counts triangles and non-simple paths

(e.g., x-y-x-z), which may or may not be considered as length-3 paths depending on the

application. If not, they can be excluded by introducing a predicate (i.e., redefining ψ)

A ̸= C ∧ A ̸= D ∧ B ̸= D. If the graph is undirected, then the query counts every path twice,

so we should divide the answer by 2. Alternatively, we may introduce the predicate A < D

to eliminate the double counting.

Finally, for an SPJA query where the output variables are o ⊂ var(J), we simply

replace J(I) with πoJ(I) in (5.2). Note that we use the relational algebra semantics of

a projection, where duplicates are removed. If not, the projection would not make any

difference in the aggregate. In fact, it is precisely the duplicate-removal that makes SPJA

queries more difficult than SJA queries in terms of optimality, as we argue in Section 5.5.

5.1.2 Differential Privacy in Relational Databases with Foreign

Key Constraints (User-DP Model)

We adopt the DP policy in [57], which defines neighboring instances by taking foreign

key (FK) constraints into consideration. We model all the FK relationships as a directed

acyclic graph over R by adding a directed edge from R to R′ if R has an FK referencing

the PK of R′. There is a1 designated primary private relation RP and any relation that

has a direct or indirect FK referencing RP is called a secondary private relation. The

referencing relationship over the tuples is defined recursively as follows: (1) any tuple

tP ∈ I(RP) said to reference itself; (2) for tP ∈ I(RP), t ∈ I(R), t′ ∈ I(R′), if t′ references

tP , R has an FK referencing the PK of R′, and the FK of t equals to the PK of t′, then

we say that t references tP . Then two instances I and I′ are considered neighbors if I′

can be obtained from I by deleting a set of tuples, all of which reference the same tuple

tP ∈ I(RP), or vice versa. In particular, tP may also be deleted, in which case all tuples

referencing tP must be deleted in order to preserve the FK constraints. Finally, for a join

result q ∈ J(I), we say that q references tP ∈ I(RP) if |tP ⋊⋉ q| = 1.

1For most parts of the paper, we consider the case where there is only one primary private relation in

R; the case with multiple primary private relations is discussed in Section 5.6.

75

We use the notation I ∼ I′ to denote two neighboring instances and I ∼tP I′ denotes

that all tuples in the difference between I and I′ reference the tuple tP ∈ RP .

In a relational database, user-DP model is equivalent to FK constraints: the users are

stored in the user relation and we build FK constraints between user relation and others

and add/delete one user will also add/delete all tuples referencing that.

Example 5.1.2. Consider the TPC-H schema:

R = {Nation(NK), Customer(CK, NK), Order(OK, CK), Lineitem(OK)}.

If the customers are the individuals whose privacy we wish to protect, then we designate

Customer as the primary private relation, which implies that Order and Lineitem will

be secondary private relations, while Nation will be public. Note that once Customer is

designated as a primary private relation, the information in Order and Lineitem is also

protected since the privacy induced by Customer is stronger than that induced by Order

and Lineitem. Alternatively, one may designate Order as the primary private relation,

which implies that Lineitem will be a secondary private relation, while Customer and

Nation will be public. This would result in weaker privacy protection but offer higher

utility.

Some queries, as given, may be incomplete, i.e., it has a variable that is an FK but its

referenced PK does not appear in the query Q. The query in Example 5.1.1 is such an

example. Following [57], we always make the query complete by iteratively adding those

relations whose PKs are referenced to Q. The PKs will be given variables names matching

the FKs. For example, for the query in Example 5.1.1, we add Node(A), Node(B), Node(C),

and Node(D).

The DP policy above incorporates both edge-DP and node-DP, two commonly used

DP policies for private graph analysis, as special cases. In Example 5.1.1, by designating

Edge as the private relation (Node is thus public, and we may even assume it contains all

possible vertex IDs), we obtain edge-DP; for node-DP, we add FK constraints from src

and dst to ID, and designate Node as the primary private relation, while Edge becomes a

secondary private relation.

After formulating the neighboring instances, we can feed this to (1.1) to define user-DP

in a relational database.

76

5.2 Instance Optimality under User DP

Global sensitivity and worst-case optimality As mentioned in Section 1.1.1, the

most standard DP mechanism is the Laplace mechanism [37], which adds Lap(GSQ) to the

query answer. However, either the user DP or a sum aggregation makes GSQ unbounded.

The issue with the former is illustrated in the example given at the beginning of Section

1.2, where a customer may have unbounded orders.

A sum aggregation with an unbounded ψ results in the same situation. Thus, as with

prior work [6, 7, 69, 62, 76, 46], we restrict to a set of instances I such that

max
I∈I,I′∈I,I∼I′

|Q(I)−Q(I′)| = GSQ, (5.3)

where GSQ is a parameter given in advance. For the query given at the beginning of

Section 1.2, this is equivalent to assuming that a customer is allowed to have at most

GSQ orders in any instance.

For general queries, the situation is more complicated. We first consider SJA queries.

Given an instance I and an SJA query Q, for a tuple tP ∈ I(RP), its sensitivity is

SQ(I, tP) :=
∑

q∈J(I)

ψ(q)I(q references tP), (5.4)

where I(·) is the indicator function. For SJA queries, (5.3) is equivalent to

max
I∈I

max
tP∈I(RP)

SQ(I, tP) = GSQ.

For self-join-free SJA queries, it is clear that

Q(I) =
∑

tP∈RP

SQ(I, tP),

which turns the problem into a sum estimation problem (SA queries). However, when self-

joins are present, this equality no longer holds since one join result q references multiple

tP ’s. This also implies that removing one tuple from I(RP) may affect multiple SQ(I, tP)’s,

making the neighboring relationship more complicated than in the sum estimation prob-

lem, where two neighboring instances differ by only one datum [6, 7, 69, 62, 46].

What notion of optimality shall we use for sum aggregation queries over user-DP?

The worst-case optimality is meaningless even in SA queries. Besides, as mentioned in

77

Section 1.1.1, instance optimality is unachievable under DP. In this chapter, we adopt the

high probability error metric thus instance optimal lower bound should be reformulated

as

Lins(I) := min
M ′∈M

min{ξ : Pr[|M ′(I)−Q(I)| ≤ ξ] ≥ 2/3}.

Recall under tuple-DP, we adopt neighborhood optimality, a relaxed version of instance

optimality where we compare M against any M ′ that is required to work well not just on

I, but also on its neighbors, i.e., we raise the target error from Lins(I) to

Lnbr(I) := min
M ′∈M

max
I′:I∼I′

min{ξ : Pr[|M ′(I′)−Q(I′)| ≤ ξ] ≥ 2/3},

and Vadhan [77] observes that Lnbr(I) ≥ LSQ(I)/2.

However, it has an issue for SJA queries in a database with FK constraints, namely,

under user-DP: For any I, we can add a tP to I(RP) together with tuples in the secondary

private relations all referencing tP , obtaining an I′ such that SQ(I′, tP) = GSQ, i.e.,

LSQ(·) ≡ GSQ. This means that this relaxed instance optimality degenerates into worst-

case optimality. This is also why smooth sensitivity, including all its efficiently computable

versions [67, 48, 29, 31], will not have better utility than the naive Laplace mechanism on

databases with FK constraints, since they are all no lower than the local sensitivity.

The reason why the above relaxation from instance optimality to neighborhood opti-

mality is “too much” is that we require M ′ to work well on any neighbor I′ of I. Under

the neighborhood definition with FK constraints, this means that I′ can be any instance

obtained from I by adding a tuple tP and arbitrary tuples referencing tP in the secondary

private relations. This is too high a requirement for M ′, hence too low an optimality

notion for M .

To address the issue, we revise Lnbr(·) to

Ld-nbr(I) := min
M ′∈M

max
I′:I∼I′,I′⊆I

min{ξ : Pr[|M ′(I′)−Q(I′)| ≤ ξ] ≥ 2/3},

namely, we require M ′ to work well only on I′ and its down-neighbors, which can be

obtained only by removing a tuple tP already in I(RP) and all tuples referencing tP . A

mechanism M is down-neighborhood optimal if

Pr[|M(I)−Q(I)| ≤ c · Lins(I)] ≥ 2/3

for every I, where c is called the optimality ratio.

78

Using the same argument from [77], we have Ld-nbr(I) ≥ DSQ(I)/2, where

DSQ(I) := max
I′,I∼I,I′⊆I

|Q(I)−Q(I′)| = max
tP∈I(RP)

SQ(I, tP) (5.5)

is the downward sensitivity of I. Thus, DSQ(I) is a per-instance lower bound, which can

be used to replace Linc(I) in (5.2) in the definition of instance-optimal DP mechanisms.

5.3 R2T: Instance-optimal Truncation

Our instance-optimal truncation mechanism, Race-to-the-Top (R2T), can be used in

combination with any truncation method Q(I, τ), which is a function Q : I ×N→ N with

the following properties:

(1) For any τ , the global sensitivity of Q(·, τ) is at most τ .

(2) For any τ , Q(I, τ) ≤ Q(I).

(3) For any I, there exists a non-negative integer τ ∗(I) ≤ GSQ such that for any τ ≥

τ ∗(I), Q(I, τ) = Q(I).

We describe various choices for Q(I, τ) depending on the DP policy and whether the

query contains self-joins and/or projections in the subsequent sections. Intuitively, such

a Q(I, τ) gives a stable (property (1)) underestimate (property (2)) of Q(I), while reaches

Q(I) for τ sufficiently large (property (3)). Note that Q(I, τ) itself is not DP. To make

it DP, we can add Lap(τ/ε), which would turn it into an ε-DP mechanism by property

(1). The issue, of course, is how to set τ . The basic idea of R2T is to try geometrically

increasing values of τ and somehow pick the “winner” of the race.

Assuming such a Q(I, τ), R2T is works as follows. For a probability2 β, we first

compute3

Q̃(I, τ (j)) :=Q(I, τ (j)) + Lap

(
log(GSQ)

τ (j)

ε

)

− log(GSQ) ln

(
log(GSQ)

β

)
· τ

(j)

ε
, (5.6)

2The probability β only concerns about the utility but not privacy.

3log has base 2 and ln has base e.

79

1000

2000

3000

4000

8000

5000

6000

7000

2 4 8 16 32 64 128 256 512

Figure 5.1: An illustration of R2T.

for τ (j) = 2j, j = 1, . . . , log(GSQ). Then R2T outputs

Q̃(I) := max

{
max

j
Q̃(I, τ (j)), Q(I, 0)

}
. (5.7)

The privacy of R2T is straightforward: Since Q(I, τ (j)) has global sensitivity at most

τ (j), and the third term of (5.6) is independent of I, each Q̃(I, τ (j)) satisfies ε
log(GSQ)

-DP

by the standard Laplace mechanism. Collectively, all the Q̃(I, τ (j))’s satisfy ε-DP by the

basic composition theorem (defined in Section 4.1.2). Finally, returning the maximum

preserves DP by the post-processing property of DP.

Utility analysis For some intuition on why R2T offers good utility, please see Figure

5.1. By property (2) and (3), as we increase τ , Q(I, τ) gradually approaches the true

answer Q(I) from below and reaches Q(I, τ) = Q(I) when τ ≥ τ ∗(I). However, we cannot

use Q(I, τ) or τ ∗(I) directly as this would violate DP. Instead, we only get to see Q̃(I, τ),

which is masked with the noise of scale proportional to τ . We thus face a dilemma, that

the closer we get to Q(I), the more uncertain we are about the estimate Q̃(I, τ). To get

out of the dilemma, we shift Q(I, τ) down by an amount that equals to the scale of the

noise (if ignoring the log log factor). This penalty for Q̃(I, τ̂), where τ̂ is the smallest

power of 2 above τ ∗(I), will be on the same order as τ ∗(I), so it will not affect its error

by more than a constant factor, while taking the maximum ensures that the winner is

80

at least as good as Q̃(I, τ̂). Meanwhile, the extra log log factor ensures that no Q̃(I, τ)

overshoots the target. Below, we formalize the intuition.

Theorem 5.3.1. On any instance I, with probability at least 1− β, we have

Q(I)− 4 log(GSQ) ln

(
log(GSQ)

β

)
τ ∗(I)

ε
≤ Q̃(I) ≤ Q(I).

Proof. It suffices to show that each inequality holds with probability at least 1− β
2
. For the

second inequality, since Q(I, 0) ≤ Q(I), we just need to show that maxj Q̃(I, τ (j)) ≤ Q(I).

By a union bound, it suffices to show that Q̃(I, τ) ≤ Q(I) with probability at most

β
2 log(GSQ)

for each τ . This easily follows from property (2) of Q(I, τ) and the tail bound

of the Laplace distribution:

Pr[Q̃(I, τ) > Q(I)]

≤Pr[Q̃(I, τ) > Q(I, τ)]

=Pr

[
Lap

(
log(GSQ)

τ

ε

)
> log(GSQ) ln

(
log(GSQ)

β

)
· τ
ε

]
=

β

2 log(GSQ)
.

For the first inequality, we discuss two cases τ ∗(I) = 0 and τ ∗(I) ∈ [2j−1, 2j] for

some j ≥ 1. For the first case, by property (3) of Q(I, τ), Q(I, 0) = Q(I). Therefore,

Q̃(I) ≥ Q(I, 0) = Q(I). Below we discuss the second case where τ ∗(I) ∈ [2j−1, 2j]. Note

that 2j ≤ 2τ ∗(I). Let τ̂ = 2j. By the tail bound on the Laplace distribution, with

probability at least 1− β
2
, we have

Q̃(I, τ̂) ≥Q(I, 2j)− 2 log(GSQ) ln

(
log(GSQ)

β

)
2j

ε

=Q(I)− 2 log(GSQ) ln

(
log(GSQ)

β

)
2j

ε
(5.8)

≥Q(I)− 4 log(GSQ) ln

(
log(GSQ)

β

)
τ ∗(I)

ε
. (5.9)

Note that (5.8) follows the third property of Q(I, τ), and (5.9) is because 2j ≤ 2τ ∗(I).

Finally, since Q̃(I) = maxj Q̃(I, τ (j)) ≥ Q̃(I, τ̂), the first inequality also holds with proba-

bility at least 1− β
2
.

81

5.4 Truncation for SJA Queries

In this section, we will design a Q(I, τ) with τ ∗(I) = DSQ(I) for SJA queries. Plugged

into Theorem 5.3.1 with β = 1/3 and the definition of instance optimality, this turns R2T

into an instance-optimal DP mechanism with an optimality ratio ofO(log(GSQ) log log(GSQ)/ε).

For self-join-free SJA queries, each join result q ∈ J(I) references only one tuple in RP .

Thus, the tuples in RP are independent, i.e., removing one does not affect the sensitivities

of others. This means that naive truncation (i.e., removing all SQ(I, tP) > τ and then

summing up the rest) is a valid Q(I, τ) that satisfies the 3 properties required by R2T

with τ ∗(I) = DSQ(I).

When there are self-joins, naive truncation does not satisfy property (1), as illustrated

in Example 1.2.1, where all SQ(I, tP)’s in two neighboring instances may differ. Below

we generalize the LP-based mechanism for graph pattern counting [55] to arbitrary SJA

queries, and show that it satisfies the 3 properties with τ ∗(I) = DSQ(I).

Given a SJA query Q and instance I, recall that Q(I) =
∑

q∈J(I) ψ(q), where J(I) is

the join results. For k ∈ [|J(I)|], let qk(I) be the kth join result. For each j ∈ [|I(RP)|],

let tj(I) be the jth tuple in I(RP). We use Cj(I) to denote (the indices of) the set of join

results that reference tj(I). More precisely,

Cj(I) := {k : qk(I) references tj(I)}. (5.10)

For each k ∈ [|J(I)|], introduce a variable uk, which represents the weight assigned to the

join result qk(I). We return the optimal solution of the following LP as Q(I, τ):

maximize Q(I, τ) =
∑

k∈[|J(I)|]

uk,

subject to
∑

k∈Cj(I)

uk ≤ τ, j ∈ [|I(RP)|],

0 ≤ uk ≤ ψ(qk(I)), k ∈ [|J(I)|].

ex:self-join-queries

Lemma 5.4.1. For SJA queries, the Q(I, τ) defined above satisfies the 3 properties re-

quired by R2T with τ ∗(I) = DSQ(I).

Proof. Property (2) easily follows from the constraint uk ≤ ψ(qk(I)). For property (3),

observe that for SJA queries, for any j ∈ [|I(RP)|], SQ(I, tj(I)) =
∑

k∈Cj(I)
ψ(qk(I)). So

82

when τ ≥ DSQ(I), all constraints
∑

k∈Cj(I)
uk ≤ τ are satisfied automatically and we can

set uk = ψ(qk(I)) for all k.

Below, we prove property (1), i.e., for any I ∼ I′, Q(I, τ) and Q(I′, τ) differ by at

most τ . W.l.o.g., assume I ⊆ I′. It is clear that J(I) ⊆ J(I′), and we order the join

results in J(I′) in such a way that the extra join results are at the end. This means that

the two LPs on I and I′ share common variables u1, . . . , uJ(I), while the latter has some

extra variables uJ(I)+1, . . . , uJ(I′). Each constraint
∑

k∈Cj(I)
uk ≤ τ in the LP on I has a

counterpart
∑

k∈Cj(I′)
uk ≤ τ in the LP on I′, where Cj(I) ⊆ Cj(I

′). Let tj∗ be the tuple

in I′(RP) that all tuples in I′ − I reference. Note that tj∗ may or may not appear in I.

But in either case, the LP on I′ has a constraint
∑

k∈Cj∗ (I′)
uk ≤ τ and Cj∗(I′) contains

all the extra variables in the LP on I′.

Let {u∗k(I)}k be the optimal solution of the LP on I. We extend it to a solution

{uk(I′)}k of the LP on I′, by setting uk(I′) = u∗k(I) for k ≤ |J(I)| and uk(I′) = 0 for all

k > |J(I)|. It is clear that {uk(I′)}k is a valid solution of the LP on I′, so we have

Q(I′, τ) ≥
∑
k

uk(I′) =
∑
k

u∗(I) = Q(I, τ).

For the other direction, let {u∗k(I′)}k be an optimal solution of the LP on I′. We cut it

down to a solution {uk(I)}k of the LP on I, by setting uk(I) = u∗k(I′) for k ≤ |J(I)| while

ignoring all u∗k(I′) for k > |J(I)|. It is clear that {uk(I)}k is a valid solution of the LP on

I, so we have

Q(I, τ) ≥
∑
k

uk(I) ≥
∑
k

u∗(I′)− τ = Q(I′, τ)− τ,

where the second inequality follows from the observation that the constraint
∑

k∈Cj∗ (I′)
uk ≤

τ in the LP on I′ implies that the sum of the ignored u∗k(I′)’s is at most τ .

Example 5.4.1. We now give a step-by-step example to show how this truncation method

works together with R2T. Consider the problem of edge counting under node-DP, which

corresponds to the SJA query

Q := |σID1<ID2(Node(ID1) ⋊⋉ Node(ID2) ⋊⋉ Edge(ID1, ID2))|

on the graph data schema introduced in Example 5.1.1. Note that in SQL, the query

83

100

8-star

32-star16-star

10

4-complete graph

1000

1000

triangle

Figure 5.2: Example of edge counting.

would be written as

SELECT count(∗) FROM Node AS Node1, Node AS Node2, Edge

WHERE Edge.src = Node1.ID AND Edge.dst = Node2.ID

AND Node1.ID < Node2.ID

Suppose we set GSQ = 28 = 256. For this particular Q, this means the maximum

degree of any node in any instance I ∈ I is 256. We set β = 0.1 and ε = 1.

Now, suppose we are given an I containing 8103 nodes, which form 1000 triangles,

1000 4-cliques, 100 8-stars, 10 16-stars, and one 32-star as shown in Figure 5.2. The true

query result is

Q(I) = 3× 1000 + 6× 1000 + 8× 100 + 16× 10 + 32 = 9992.

We run R2T with τ (j) = 2j for j = 1, . . . , 8. For each τ = τ (j), we assign a weight

uk ∈ [0, 1] to each join result (i.e., an edge) that satisfies the predicate ID1 < ID2. To

calculate Q(I, τ), we can consider the LP on each clique/star separately. For a triangle,

the optimal LP solution always assigns uk = 1 for each edge. For each 4-clique, it assigns

2/3 to each edge for τ = 2 and 1 for τ ≥ 4. For each k-star, the LP optimal solution is

84

min{k, τ}. Thus, the optimal LP solutions are

Q(I, 2) = 1× 3000 +
2

3
× 6000 + 2× 100 + 2× 10 + 2× 1 = 7222,

Q(I, 4) = 1× 3000 + 1× 6000 + 4× 100 + 4× 10 + 4× 1 = 9444,

Q(I, 8) = 1× 3000 + 1× 6000 + 8× 100 + 8× 10 + 8× 1 = 9888,

Q(I, 16) = 1× 3000 + 1× 6000 + 8× 100 + 16× 10 + 16× 1 = 9976.

In addition, we have Q(I, 0) = 0 and Q(I, τ) = 9992 for τ ≥ 32. Finally, we plug all the

Q(I, τ)’s into (5.6) and (5.7) to obtain the final output.

5.5 Truncation for SPJA Queries

A negative result The correctness of the LP-based truncation method relies on a key

property of SJA queries, that removing tP will always reduce Q(I) by SQ(I, tP), which

is the contribution of tP to Q(I). Unfortunately, the projection operator violates this

property, as illustrated in the following example.

Example 5.5.1. Consider the query

Q := |πx2(R1(x1) ⋊⋉ R2(x1, x2))|,

where R1 is the primary private relation, and R2 is a secondary relation. Consider the

following instance I: Set I(R1) = {(a1), (a2)}, I(R2) = {(ai, bj) : i ∈ [2], j ∈ [m]}. Both

(a1) and (a2) contribute m to Q(I) but their contributions “overlap”, thus removing either

will not affect the query result, i.e., DSQ(I) = 0.

Intuitively, a projection reduces the query answer, hence its sensitivity, so it requires

less noise. However, it makes achieving instance optimality harder because the optimality

target, DSQ(I), may get a lot smaller, as illustrated in the example above. In particular,

the second equality in (5.5) no longer holds (the first equality is the definition of DSQ(I)),

and DSQ(I) may be smaller than any SQ(I, tP). We formalize this intuition with the

following negative result:

Theorem 5.5.1. Let Q be the query in Example 5.5.1. For any GSQ, there is a set of

instances I with global sensitivity GSQ such that, for any functions M ,f : I → R, if

Pr[|M(I)−Q(I)| ≤ f(I) ·DSQ(I)] ≥ 2/3, then M is not ε-DP for any ε < 1
2

ln(GSQ/2).

85

Proof. We build the set of instances I as follows. First, put the empty instance I0 into I.

Then, for any m ∈ [GSQ], construct an Im with Im(R1) = {(a1), (a2)}, Im(R2) = {(ai, bj) :

i ∈ [2], j ∈ [m]}. Note that Q(Im) = m, and DSQ(Im) = 0 since removing either (a1) or

(a2) will not affect the query result. Finally, for each Im, remove (a1) (and all referencing

tuples) and add the resulting instance to I. It can be verified that the global sensitivity

of I is GSQ. Meanwhile, for any m ∈ [GSQ], Im and I0 are 2-hop neighbors, so if M is

ε-DP, then

Pr[M(Im) = y] ≤ e2ε Pr[M(I0) = y],

for any y, by the group privacy property of DP [37].

The instance-optimality guarantee implies that for every m ∈ [GSQ],

Pr[M(Im) = m] ≥ 2/3.

Consider I0. On the one hand,

Pr[M(I0) ̸= 0] ≤ 1/3. (5.11)

On the other hand,

Pr[M(I0) ̸= 0] ≥Pr[M(I0) = 1] + · · ·+ Pr[M(I0) = GSQ]

≥
GSQ∑
m=1

e−2ε Pr[M(Im) = m]

≥
GSQ∑
m=1

e−2ε · 2

3
=

2GSQ

3e2ε
,

which contradicts (5.11) when ε < 1
2

ln(GSQ/2).

Indirect sensitivity Recall the definition of SQ(I, tP) as in (5.4). However, for an

SPJA query, we have Q(I) =
∑

q∈πoJ(I)
ψ(q) instead of Q(I) =

∑
q∈J(I) ψ(q) thus (5.5)

no longer holds. This means that, while SQ(I, tP) is still the contribution of tP to Q(I),

it is “indirect”: The overlapping contributions should be counted only once due to the

projection operator removing duplicates.

We now define the indirect sensitivity for an instance I:

ISQ(I) = max
tP∈I(RP)

SQ(I, tP).

86

It should be clear that ISQ(I) ≥ DSQ(I) due to the overlapping; in the extreme case

shown in Example 5.5.1, we have ISQ(I) = m but DSQ(I) = 0. Below we give a truncation

method for SPJA queries with τ ∗(I) = ISQ(I). When plugged into R2T, this yields a DP

mechanism with error O(log(GSQ) log log(GSQ)ISQ(I)/ε). This is not instance-optimal,

which is unachievable by Theorem 5.5.1 anyway. Note that for SJA queries, we have

o = var(J), and DSQ(I) = ISQ(I) in this case.

Truncation method We modify the LP-based truncation method from Section 5.4 to

handle SPJA queries. Let pl(I) be the l-th result in πoJ(I), qk(I) the k-th result in J(I).

To formalize the relationship of the query results before and after the projection, we use

Dl(I) to denote (the indices of) the join results corresponding to the projected result pl(I),

i.e.,

Dl(I) := {j : pl = πoqj(I)},

while Cj(I) is still defined as in (5.10). Then SQ(I, tj) can be rewritten as

SQ(I, tj) =
∑

k∈Cj(I)

ψ(qk(I)).

Now, we define a new LP. For each l ∈ [|πoJ(I)|], we introduce a new variable vl ∈

[0, ψ(pl(I))], which represents the weight assigned to the projected result pl(I). For each

k ∈ [|J(I)|], we still use a variable uk(I) ∈ [0, ψ(qk(I))] to represent the weight assigned to

qk(I). We keep the same truncation constraints on the uk’s, while adding the constraint

that a the weight of a projected result should not exceed the total weights of all its

corresponding join results. Then we try to maximize the projected results. More precisely,

the new LP is

maximize Q(I, τ) =
∑

l∈[|πoJ(I)|]

vl

subject to vl ≤
∑

k∈Dl(I)

uk, l ∈ [|πoJ(I)|],

∑
k∈Cj(I)

uk ≤ τ, j ∈ [|I(RP)|],

0 ≤ uk ≤ ψ(qk(I)), k ∈ [|J(I)|],

0 ≤ vl ≤ ψ(pl(I)), l ∈ [|πoJ(I)|].

We can show that this modified LP yields a valid truncation method for SPJA queries:

87

Lemma 5.5.1. For SPJA queries, the Q(I, τ) defined above satisfies the 3 properties

required by R2T with τ ∗(I) = ISQ(I).

Proof. First, same as SJA queries, property (2) holds due to the constraint vl ≤ ψ(pl(I)).

For property (3), we have SQ(I, tj) =
∑

k∈Cj(I)
ψ(qk(I)). Then with same argument as

in the proof of Lemma 5.4.1, we can show that the property holds with τ ∗(I) = ISQ(I).

Finally consider property (1). For any I ∼ I′, I ⊆ I′, it is easy to see that J(I) ⊆ J(I′)

and all different projection results are in Cj∗ for some j∗ ∈ [|I(RP)|]. Then the same line

of reasoning as in the proof of Lemma 5.4.1 proves property (1).

5.6 Multiple Primary Private Relations

Now we consider the case with k ≥ 2 primary private relations R1
P , . . . , R

k
P . In this

case, two instances are considered neighbors if one can be obtained from the other by

deleting a set of tuples, all of which reference the same tuple that belongs to some Ri
P , i ∈

[k]. We reduce it to the case with only one primary private relation as follows. Add

a new column ID to every I(Ri
P), i ∈ [k], and assign unique identifiers to all tuples in

these relations. Next, we construct a new relation RP (ID), whose physical instance I(RP)

consists of all these identifiers. For each Ri
P , we add an FK constraint from its ID column

to reference the ID column of RP . Note that this FK reference relationship is actually

a bijection between the ID column in RP and all the identifiers in the primary private

relations. Now, we designate RP as the only primary private relation, while Ri
P , i ∈ [k]

all become secondary private relations. The original secondary private relations, i.e.,

those having FK references to the Ri
P ’s directly or indirectly, are still secondary private

relations.

It is not hard to see that (1) the query answer is not affected by this schema change;

(2) two instances in the original schema are neighbors if and only if they are neighbors

in the new schema; and (3) the join results that reference any tuple t ∈ I(Ri
P), i ∈ [k]

are the same as those that reference tP ∈ I(RP), where tP and t have the same identifier.

Thus, both the privacy and utility guarantees of our algorithm continue to hold.

Finally, it is worth pointing out that the reduction above is conceptual; in the actual

implementation, there is no need to construct the new primary private relation and the

additional ID columns, as illustrated in Example 5.7.1 of the next section.

88

LP Solver

SQL query

The set of primary
private relations

Aggregation values of join results and relationships
between base table tuples and join results

Noise addition and constant term reduction

Max

R2T Algorithm

Figure 5.3: System structure.

lineitem

orderspartsupp

part supplier customer

nation

region

Figure 5.4: The foreign-key graph of TPC-H schema.

5.7 System Implementation

Based on the R2T algorithm, we have implemented a system on top of PostgreSQL

and CPLEX. The system structure is shown in Figure 5.3. The input to our system is

any SPJA query written in SQL, together with a designated primary private relation RP

(interestingly, while R2T satisfies the DP policy with FK constraints, the algorithm itself

does not need to know the PK-FK constraints).

The system supports SUM and COUNT aggregation. Our SQL parser first unpacks the

89

aggregation into a reporting query so as to find ψ(qk(I)) for each join result, as well as

Cj(I), which stores the referencing relationships between tuples in I(RP) and J(I).

Example 5.7.1. Suppose we use the TPC-H schema (shown in Figure 5.4), where we

designate Supplier and Customer as primary private relations. Consider the following

query:

SELECT SUM(price ∗ (1− discount))

FROM Supplier, Lineitem, Orders, Customer

WHERE Supplier.SK = Lineitem.SK AND Lineitem.OK = Orders.OK

AND Orders.CK = Customer.CK

AND Orders.orderdate >=′ 2020− 08− 01′

We rewrite it as

SELECT Supplier.SK, Customer.CK, price ∗ (1− discount)

FROM Supplier, Lineitem, Orders, Customer

WHERE Supplier.SK = Lineitem.SK AND Lineitem.OK = Orders.OK

AND Orders.CK = Customer.CK

AND Orders.orderdate >=′ 2020− 08− 01′

The price ∗ (1− discount) column in the query results gives all the ψ(qk(I)) values,

while Supplier.SK and Customer.CK yield the referencing relationships from each supplier

and customer to all the join results they contribute to.

We execute the rewritten query in PostgreSQL, and export the query results to a

file. Then, an external program is invoked to construct the log(GSQ) LPs from the query

results, which are then solved by CPLEX. Finally, we use R2T to compute a privatized

output.

The computation bottleneck is the log(GSQ) LPs, each of which contains |J(I)| vari-

ables and |J(I)| + |I(RP)| constraints. This takes polynomial time, but can still be very

expensive in practice. One immediate optimization is to solve them in parallel. Below we

present another effective technique to speed up the process.

Early stop The key observation is that R2T returns the maximum of O(log(GSQ))

maximization LPs (masked by some noise and reduced by a factor), and most LP solvers

90

Algorithm 4: R2T with early stop

Input: I, Q,RP , GSQ

1 Q̃(I)← 0;

2 for τ (j) ← GSQ,GSQ/2, . . . , 1 do in parallel

3 T (j) ← Lap
(

log(GSQ) τ
(j)

ε

)
− log(GSQ) ln

(
log(GSQ)

β

)
· τ (j)

ε
;

4 for t← 1, 2, . . . do

5 if Q̂(t)(I, τ (j)) achieves the optimal then

6 Q̃(I)← max(Q̃(I), Q̂(t)(I, τ (j)) + T (j));

7 Break;

8 else if Q̂(t)(I, τ (j)) + T (j) ≤ Q̃(I) then

9 Break;

10 end

11 end

12 end

13 return Q̃(I);

(e.g., CPLEX) for maximization problems use some iterative search technique to gradually

approach the optimum from below, namely, these O(log(GSQ)) LP solvers all “race to the

top”. Thus, we will not know the winner until they all stop.

To cut down the unnecessary search, the idea is to flip the problem around. Instead

of solving the primal LPs, we solve their duals. By LP duality, the dual LP has the same

optimal solution as the primal, but importantly, the LP solver will approach the optimal

solution from above, namely, we have a gradually decreasing upper bound for the optimal

solution of each LP. This allows us to terminate those LPs that have no hope to be the

winner. The optimized R2T algorithm, shown in Algorithm 4, also uses the trick that

the noises are generated before we start running the LP solvers, so that we know when

to terminate.

In Algorithm 4, we use t to denote the iterations of the LP solver, and use Q̂(t)(I, τ) to

denote the solution to the dual LP in the t-th iteration. A technicality is that in line 1, we

should initialize Q̃(I) to Q(I, 0) to be consistent with the R2T algorithm, but Q(I, 0) = 0

for all the truncation methods described in this paper.

When there are not enough CPU cores to solve all LPs in parallel, we choose to start

with those with a larger τ in line 3 of Algorithm 4. This is based on our observation that

those LPs tend to terminate faster. This is very intuitive: when τ is larger, the optimal

solution is also higher, thus the LP solver for the dual can terminate earlier.

91

5.8 Experiments

We conducted experiments on two types of queries: graph pattern counting queries

under node-DP and general SPJA queries with FK constraints, with the former being

an important special case of the latter. For graph pattern counting queries, we compare

R2T with naive truncation with smooth sensitivity (NT) [55], smooth distance estimator

(SDE) [15], recursive mechanism (RM) [22], and the LP-based mechanism (LP) [55]. For

general SPJA queries, we compare with the local sensitivity-based mechanism (LS) [76].

 TPC-H Queries

Primary private relation Selection attribute Projection attributeAggregation attribute

Sub-graph Counting Queries

Figure 5.5: The structure of queries.

Dataset Deezer Amazon1 Amazon2 RoadnetPA RoadnetCA

Nodes 144,000 262,000 335,000 1,090,000 1,970,000

Edges 847,000 900,000 926,000 1,540,000 2,770,000

Maximum degree 420 420 549 9 12

Degree upper bound D 1,024 1,024 1,024 16 16

Table 5.1: Graph datasets used in the experiments.

5.8.1 Setup

Queries For graph pattern counting queries, we used four queries: edge counting Q1−,

length-2 path counting Q2−, triangle counting Q△, and rectangle counting Q□. For SPJA

queries, we used 10 queries from the TPC-H benchmark, whose structures are shown in

Figure 5.5. These queries involve a good mix of selection, projection, join, and aggrega-

tion. We removed all the group-by clauses from the queries — a brief discussion on this

is provided at the end of the paper.

Datasets For graph pattern counting queries, we used 5 real world networks datasets:

Deezer, Amazon1, Amazon2, RoadnetPA and RoadnetCA. Deezer collects the

friendships of users from the music streaming service Deezer. Amazon1 and Amazon2

92

are two Amazon co-purchasing networks. RoadnetPA and RoadnetCA are road net-

works of Pennsylvania and California, respectively. All these datasets are obtained from

SNAP [58]. Table 5.1 shows the basic statistics of these datasets.

Most algorithms need to assume a GSQ in advance. Note that the value of GSQ should

not depend on the instance, but may use some background knowledge for a particular

class of instances. Thus, for the three social networks, we set a degree upper bound of

D = 1024, while for the two road networks, we set D = 16. Then we set GSQ as the

maximum number of graph patterns containing any node. This means that GSQ1− = D,

GSQ2− = GSQ△ = D2, and GSQ□
= D3. For TPC-H queries, we used datasets of scale

2−3, 2−2, . . . , 23. The one with scale 1 (default scale) has about 7.5 million tuples, and we

set GSQ = 106.

The LP mechanism requires a truncation threshold τ , but [55] does not discuss how

this should be set. Initially, we used a random threshold uniformly chosen from [1,GSQ].

This turned out to be very bad as with constant probability, the picked threshold is

Ω(GSQ), which makes these mechanisms as bad as the naive mechanism that adds GSQ

noise. To achieve better results, as in R2T, we consider {2, 4, 8, . . . ,GSQ} as the possible

choices. Similarly, NT and SDE need a truncation threshold θ on the degree, and we

choose one from {2, 4, 8, . . . , D} randomly.

Experimental environment All experiments were conducted on a Linux server with

a 24-core 2.2GHz Intel Xeon CPU and 256GB of memory. Each program was allowed to

use at most 10 threads and we set a time limit of 6 hours for each run. Each experiment

was repeated 100 times and we report the average running time. The errors are less stable

due to the random noise, so we remove the best 20 and worst 20 runs, and report the

average error of the remaining 60 runs. The failure probability β in R2T is set to 0.1.

The default DP parameter is ε = 0.8.

5.8.2 Graph Pattern Counting Queries

Utility and efficiency The errors and running times of all mechanisms over the graph

pattern counting queries are shown in Table 5.2. These results indicate a clear superiority

of R2T in terms of utility, offering order-of-magnitude improvements over other methods

in many cases. What is more desirable is its robustness: In all the 20 query-dataset

93

Dataset Deezer Amazon1 Amazon2 Roadnet−PA Roadnet−CA

Result type Relative error(%) Time(s) Relative error(%) Time(s) Relative error(%) Time(s) Relative error(%) Time(s) Relative error(%) Time(s)

q1−

Query result 847,000 1.28 900,000 1.52 926,000 1.62 1,540,000 1.51 2,770,000 2.64

R2T 0.535 12.3 0.557 15.6 0.432 16.2 0.0114 26.8 0.00635 48.7

NT 59.1 18.1 101 29.3 125 40.4 1,370 21.9 1,410 39.7

SDE 548 9,870 363 4,570 286 1,130 55.2 105 81.8 292

LP 14.3 16.9 5.72 14.7 6.75 14.4 3.6 28.3 3.02 54

q2−

Query result 21,800,000 13.8 9,120,000 11.8 9,750,000 13.8 3,390,000 6.39 6,000,000 6.06

R2T 6.64 356 12.2 170 9.06 196 0.0539 80.2 0.0352 145

NT 116 21.0 398 28.4 390 41.0 6,160 23.2 6,530 44.2

SDE 8,900 9,870 5,110 4,570 1,930 1,130 211 104 228 296

LP 35.9 8,820 23.2 3,600 27.8 461 11.1 148 13.3 404

q△

Query result 794,000 4.53 718,000 5.03 667,000 4.20 67,200 2.96 121,000 5.17

R2T 5.58 17.3 1.27 18.8 2.03 19.9 0.102 4.21 0.061 7.5

NT 782 23.0 1,660 31.7 1,920 41.0 110,000 23.3 105,000 45.0

SDE 67,300 9,880 26,000 4,570 9,600 1,130 4,150 106 3,830 297

LP 24.6 131 12.8 18.2 14.2 18.3 0.104 3.95 0.0625 7.06

RM Over time limit 0.0388 1,280 0.0193 2,550

q□

Query result 11,900,000 74.3 2,480,000 21.6 3,130,000 15.6 158,000 4.50 262,000 10.1

R2T 16.9 289 6.29 70.5 10.5 86.8 0.0729 8.18 0.0638 16.2

NT 3,750 57.6 30,700 35.8 26,100 50.6 319,000 24.8 368,000 45.0

SDE 6,970,000 9,930 11,400,000 4,580 202,000 1,140 10,300 108 9,130 300

LP 92.6 2,530 94.8 70.4 77.8 81.2 0.223 7.83 0.165 14.2

RM Over time limit 0.0217 10,500 Over time limit

Table 5.2: Comparison between R2T, naive truncation with smooth sensitivity (NT),

smooth distance estimator (SDE), LP-based Mechanism (LP), and recursive mechanism

(RM) on graph pattern counting queries.

Figure 5.6: Error levels of various mechanisms on graph pattern counting queries various

values of ε.

combinations, R2T consistently achieves an error below 20%, while the error is below 10%

in all but 3 cases. We also notice that, given a query, R2T performs better in road networks

than social networks. This is because the error of R2T is proportional to DSQ(I) by our

theoretical analysis. Thus the relative error is proportional to DSQ(I)/|Q(I)|. Therefore,

larger and sparser graphs, such as road networks, lead to smaller relative errors.

In terms of running time, all mechanisms are reasonable, except for RM and SDE.

RM can only complete within the 6-hour time limit on 3 cases, although it achieves very

small errors on these 3 cases. SDE is faster than RM but runs a bit slower than others.

It is also interesting to see that R2T sometimes even runs faster than LP, despite the fact

that R2T needs to solve O(log GSQ) LPs. This is due to the early stop optimization: The

running time of R2T is determined by the LP that corresponds to the near-optimal τ ,

which often happens to be one of the LPs that can be solved fastest.

94

Query Q1− Q2− Q△ Q□

Query result 926,000 9,750,000 667,000 3,130,000

R2T 4,000 883,000 13,500 328,000

LP

τ = GSQ 1,440 1,580,000 1,290,000 1,370,000,000

τ = GSQ/8 2,100 181,000 157,000 140,000,000

τ = GSQ/64 110,000 259,000 15,100 25,800,000

τ = GSQ/512 645,000 1,260,000 2,790 2,630,000

τ = GSQ/4096 810,000 3,950,000 2,090 274,000

τ = GSQ/32768 911,000 7,580,000 92,300 48,700

τ = GSQ/262144 924,000 9,340,000 459,000 76,400

Average error 62,500 2,710,000 94,900 2,430,000

Table 5.3: Error levels of R2T and LP-based mechanism (LP) with different τ .

Dataset Deezer Amazon1 Amazon2 RoadnetPA RoadnetCA

w early stop 289 70.5 86.8 8.18 16.2

w/o early stop 28,700 537 422 12.8 16.4

Speed up 99.3× 7.62 × 4.86× 1.56× 1.01×

Table 5.4: Running times of R2T with and without early stop.

Privacy parameter ε Next, we conducted experiments to see how the privacy param-

eter ε affects various mechanisms. We tested different queries on Roadnet−PA where

we vary ε from 0.1 to 12.8. We plot the results in Figure 5.6, where we also plot the query

result to help see the utilities of the mechanisms. The first message from the plot is the

same as before, that both R2T and RM achieve high utility (but RM spends 300x more

time). NT and SDE lose utility (i.e., error larger than query result) except for very large

ε. LP achieves similar utility as R2T on Q△ and Q□, but is much worse on Q1− and Q2−.

In particular, a higher ε does not help LP on these two queries, because the bias (further

controlled by a randomly selected τ) dominates the error for these two queries.

Selection of τ In the next set of experiments, we dive deeper and see how sensitive the

utility is with respect to the truncation threshold τ . We tested the queries on Amazon2

and measured the error of the LP-based mechanism [55] with different τ . For each query,

we tried various τ from 2 to GSQ and compare their errors with R2T. The results are

shown in Table 5.3, where the optimal error is marked in gray. The results indicate that

the error is highly sensitive to τ , and more importantly, the optimal choice of τ closely

depends on the query, and there is no fixed τ that works for all cases. On the other hand,

the error of R2T is within a small constant factor (around 6) to the optimal choice of τ ,

which is exactly the value of instance-optimality.

95

Early stop optimization We also did some experiments to compare the running time

of R2T with and without the early stop optimization. Here, we ran Q□ over different

datasets and the results are shown in Table 5.4. From this table, we can see the early

stop is particularly useful in cases with long running times. In these cases, one or two

LPs, which do not correspond to the optimal choice of τ , take a long time to run, and

early stop is able to terminate these LPs as soon as possible.

5.8.3 SPJA Queries

Query type Single primary private relation Multiple primary private relations Aggregation Projection

Query Q3 Q12 Q20 Q5 Q8 Q21 Q7 Q11 Q18 Q10

Query
result

Value 2,890,000 6,000,000 6,000,000 240,000 1,830,000 6,000,000 218,000,000 2,000,000 153,000,000 1,500,000

Time(s) 1.6 1.24 1.25 2.51 1.41 2.32 3.22 0.29 2.21 0.32

R2T
Relative error(%) 0.254 0.0229 0.579 1.626 1.92 0.654 0.607 1.82 0.132 0.174

Time(s) 18.9 28.2 24.5 8.42 39.6 124 140 4.41 42.7 8.77

LS
Relative error(%) 38.8 16.3 15.4

Not supported
Time(s) 19.2 25.8 24.4

Table 5.5: Comparison between R2T and local-sensitivity based mechanism (LS) on SQL

queries.

Utility and efficiency We tested 10 queries from the TPC-H benchmark comparing

R2T and LS, and the results are shown in Table 5.5. We see that R2T achieves order-

of-magnitude improvements over LS in terms of utility, with similar running times. More

importantly, R2T supports a variety of SPJA queries that are not supported by LS, with

robust performance across the board.

Figure 5.7: Running times and error levels of R2T and local-sensitivity based mechanism

(LS) for different data scales.

96

Figure 5.8: Error levels of R2T and local-sensitivity based mechanism (LS) with different

GSQ.

Scalability To examine the effects as the data scale changes, we used TPC-H datasets

with scale factors ranging from 2−3 to 23 with Q3, Q12 and Q20. We compare both the

errors and running times of R2T and LS. The results are shown in Figure 5.7. From the

results, we see that the error of R2T barely increases with the data size. The reason is that

our error only depends on DSQ(I), which does not change much by the scale of TPC-H

data. On the other hand, the behavior of LS is more complicated. For Q3 and Q20, its

error increases with the data size; for Q12, its error increases first but then decreases later.

This is because LS runs an SVT on the sensitivities of tuples to choose τ , which is closely

related to the distribution of tuples’ sensitivities. This is another indication that selecting

a near-optimal τ is not an easy task. In terms of running time, both mechanisms have

the running time linearly increase with the data size, which is expected.

Dependency on GSQ Our last set of experiments examine the effect GSQ brings to

the utilities of R2T and LS. We conducted experiments using Q3, Q12, Q20 with different

values of GSQ. The results are shown in Figure 5.8. When GSQ is small, the errors of

these two mechanisms are very close. When GSQ increases, the error of LS increases

rapidly, and loses the utility (error larger than query result) very soon. Meanwhile, the

error of R2T increases very slowly with GSQ. This confirms our analysis that the error of

LS grows near linearly as GSQ, while that of R2T grows logarithmically. The important

consequence is that, with R2T, one can be very conservative in setting the value of GSQ.

This gives the DBA a much easier job, in case s/he has little idea on what datasets the

database is expected to receive. Meanwhile, recall that GSQ is public information, so

using a larger GSQ reveals less information about the private dataset.

97

CHAPTER 6

ANSWERING MULTIPLE SPA QUERIES
UNDER USER-DP

6.1 Preliminaries

6.1.1 Notation

The definition of user-DP in a database has already been defined in Section 5.1, where

we study answering single SJA query. We list some key notations used in this chapter

and please refer to Section 5.1 for more details.

The users are stored in primary private relation RP with size N and ti(I) is its ith

tuple. The multi-way join is denoted as J . qj(I) denotes the jth join result. Here, we

additionally define M = |J(I)|. A SJA query Q aggregates over the join results J(I) and

we use the shorthand ψj(I) := ψ(qj(I)). To better describe the referencing relationships

between tuples and join results, for each i ∈ [N], j ∈ [M], we define

Ci(I) := {j : qj(I) references ti(I)}, (6.1)

Dj(I) := {i : qj(I) references ti(I)}. (6.2)

In this chapter, we consider answering d such queries Q = (Q1, . . . , Qd). We subscript

them by k, and generalize the notation above as Nk,Mk, Jk(I), qk,j(I), ψk,j(I), etc. An

important special case is group-by queries. Continuing with Example 1.2.1, suppose we

add a GROUP BY OrderDate clause. Then d = |dom(OrderDate)|; Nk,Mk, Jk(I), qk,j(I)

are the same for all k, while ψk,j(I) has a different predicate OrderDate =x, where x

ranges over all the dates in dom(OrderDate). Nevertheless, all developments below will

assume the general case where the d queries can be completely different.

6.1.2 More Differential Privacy

For 1D query, the most commonly used DP mechanism is the Laplace mechanism (see

Section 1.1.1). For a vectored-valued query, the Gaussian mechanism is more commonly

used:

98

Lemma 6.1.1 (Gaussian Mechanism [33, 18]). Given a d-dimensional query Q : I → Rd,

let GSQ := maxI∼I′ ∥Q(I)−Q(I′)∥. Then the mechanism

M(I) = Q(I) + σ ·Y,

where Y ∼ N (0, Id×d), preserves
(

GS2Q
2σ2 +

GSQ
σ

√
2 log(1/δ), δ

)
-DP for any δ > 0.

Thus, given ε, δ, one can set
GS2Q
2σ2 +

GSQ
σ

√
2 log(1/δ) = ε and solve for σ, and we denote

the solution as σ(ε, δ). For ε = O(1), σ(ε, δ) = O
(√

log(1/δ)/ε ·GSQ

)
, so the Gaussian

mechanism achieves an ℓ2 error of Õ
(√

d ·GSQ

)
.

Both the Laplace and the Gaussian mechanism require a small GSQ.1 If it is large or

unbounded, one may consider the local sensitivity LSQ(I), and try to obtain a DP upper

bound of LSQ(I) before applying the mechanism. Karwa et al. [53] show how this can

be done for the Laplace mechanism. Here we obtain a similar result for the Gaussian

mechanism:

Lemma 6.1.2 (Second-order Gaussian Mechanism). Given a d-dimensional query Q :

I → Rd, suppose there is an (ε1, δ1)-DP mechanism that outputs an L̂SQ(I) ≥ LSQ(I)

with probability at least 1− δ2, then the mechanism

M(I) = Q(I) + L̂SQ(I) · σ(ε2, δ3) ·Y,

where Y ∼ N (0, Id×d), preserves (ε1 + ε2, δ1 + eε1δ2 + eε1δ3)-DP.

Proof. Similar to the proof of Lemma 4.4 in [53].

However, in a relational database, LSQ(I) is also unbounded as mentioned in Sec-

tion 5.2 and we want to achieve DSQ(I) error. Recall DSQ(I) corresponds to the maximum

contribution of any user in I and has already been discussed for 1D query in Section 5.2.

For multiple queries,

DSQ(I) = max
I′⊆I,I′∼I

∥Q(I′)−Q(I)∥.

For each user ti(I) ∈ I(RP), let

Sk,i(I) =
∑

j∈Ck,i(I)

ψk,j(I) (6.3)

1In this chapter, we adopt ℓ2 distance metric thus the sensitivities like GSQ, LSQ(I) are also defined in

ℓ2 distance.

99

be the contribution of ti(I) to Qk. The contributions of ti(I) to all queries are thus a d-

dimensional vector Si(I) = (S1,i(I), . . . , Sd,i(I)). Then we have DSQ(I) = maxi∈[N] ∥Si(I)∥.

6.2 Multiple Self-join-free Queries

We start with the simpler case of d self-join-free queries. We observe that it is equiv-

alent to the sum estimation problem in d dimensions: Given N vectors in d dimensions

x1, . . . ,xN , we wish to estimate
∑

i∈[N] xi under DP where neighboring instances differ by

one vector. For the forward direction, we just set xi := Si(I). Since there is no self-join,

each join result only references one user, then adding/removing one user in I is the same

as adding/removing vector. For the backward direction, we simply construct a single

table with d columns storing these vectors, and the k-th query asks for the sum on the

k-th column.

This equivalence has two immediate consequences. First, the lower bound on the sum

estimation problem is also a lower bound for the multi-query problem, which of course

also holds for the more difficult case of self-joins:

Theorem 6.2.1 ([46, 49]). For the multi-query problem, no DP mechanism can achieve

an error smaller than Ω̃
(√

d ·DSQ(I)
)
for all I.

Secondly, any sum estimation mechanism can also be used for self-join-free queries.

However, all existing mechanisms assume that ∥Si(I)∥ ≤ GSQ for a predefined GSQ.

Under this assumption, the best result is [46]2

O

(
DSQ(I) ·

(√
d+

√
log(GSQ) log log(GSQ)

)
·
√

log(1/δ)/ε

)
.

Below, we show how to remove this assumption, i.e., we allow GSQ =∞. Meanwhile, we

also improve the error bound to

O
(

DSQ(I) ·
(√

d log(1/δ) + log log(DSQ(I))
)
/ε
)
.

Our idea is to extend our 1-dimensional mechanism given in Chapter 4 to d dimensions.

Given a truncation threshold r ≥ 0, the truncated query result Q(I, r) is defined as

Q(I, r) :=
∑
i∈[N]

(
min

(
1,

r

∥Si(I)∥

)
· Si(I)

)
.

2[46] states the result under zCDP [18]; here we translate their result to (ε, δ)-DP.

100

It is easy to see that Q(I, r) has the global sensitivity r, so the Gaussian mechanism

can be applied. Note that by using r = DSQ(I), no data is truncated and the Gaussian

mechanism achieves the optimal error Õ
(√

d ·DSQ(I)
)

. However, since DSQ(I) depends

on I, using it directly will breach privacy. Then the idea is to find a privatized r that is

as close to DSQ(I) = maxi∈[N] ∥Si(I)∥ as possible.

For any r ≥ 0, define

Count(I, r) = |{i : ∥Si(I)∥ ≤ r}| .

Then consider the sequence of queries Count(I, r)−N for r = 1, 2, 4, It is clear that

each such query has global sensitivity 1. We use SVT (introduced in Section 4.1.3) with

privacy budget ε/10 to find the first r̃ such that Count(I, r̃) − N > −60
ε

log 4
β
, where β

will be failure probability. After finding such an r̃, we invoke the Gaussian mechanism

with global sensitivity r̃ and privacy budget 9ε/10.3 The detailed algorithm is shown in

Algorithm 5.

Algorithm 5: Multiple self-join-free queries.
Input: I, ε, β

1 ĩ← SVT(−60
ε log 4

β ,
ε
10 ,Count(I, 2

0)−N,Count(I, 21)−N, . . .);

2 r̃ ← 2ĩ−1;

3 Q̃(I) = Q(I, r̃) + r̃ · σ(9ε10 , δ) ·Y, Y ∼ N (0, Id×d);

4 return Q̃(I);

Theorem 6.2.2. Algorithm 5 satisfies (ε, δ)-DP, and with probability at least 1− β,

∥Q̃(I)−Q(I)∥ = O

(
DSQ(I)

ε
·
(

log
log(DSQ)

β
+

√
d log

1

δ
log

1

β

))
.

Proof. The privacy guarantee follows directly from basic composition. For the util-

ity, by Lemma 4.1.3, with probability at least 1 − β
2
, we have (1) Count(I, r̃) ≥ N −

O
(

1
ε
· log

log(DSQ)

β

)
; and (2) r̃ ≤ DSQ(I). The first result implies the introduced bias is

O
(

DSQ(I)

ε
· log

log(DSQ)

β

)
. By combining the second result and the tail bound of Gaussian

distribution, with probability at least 1−β
2
, the added noise isO

(
DSQ(I)

ε
·
√
d log(1/δ) log(1/β)

)
.

3The ε is split into ε/10 and 9ε/10 since the error is dominated by the noise instead of bias and we want

to use more privacy budget when adding the noise.

101

6.3 Multiple Queries with Self-joins

6.3.1 Why Self-joins are Hard

When self-joins are present, or more fundamentally, when a join result references more

than one user, a number of difficulties arise. First, since the contributions of the users

overlap, the problem is no longer equivalent to sum estimation. Second, as pointed out

in [27], the truncation mechanism fails: The query on all users i with Si(I) ≤ r still has

unbounded global sensitivity. To address this issue, [27] replaces this “hard” truncation

with a “soft” truncation [55] for the case of a single query. The idea is that each join

result may contribute a part of its full ψj(I), so that the total contribution from any user

is bounded by r. This can be formulated as an LP, where the variable zj denotes the

partial contribution from the j-th join result:

max Q(I, r) =
∑
j∈[M]

zj

s.t.
∑

j∈Ci(I)

zj ≤ r, i ∈ [N],

0 ≤ zj ≤ ψj(I), j ∈ [M].

The truncated query answer, denoted Q(I, r), is set to be the optimal solution of this

LP, which can be shown to have global sensitivity r, so the Laplace mechanism can be

applied. Then, [27] further proposes a mechanism to privately select an r to achieve the

optimal error Õ(DSQ(I)).

This LP can be naturally extended to multiple queries: zj and ψj(I) both become

d-dimensional vectors, the first constraint imposes a bound r on the ℓ2 norm of
∑
zj, and

the second constraint becomes an element-wise inequality. Meanwhile, Q(I, r) =
∑
zj

also becomes a vector, and we may try to maximize its norm. This turns the LP in a

quadratic program (QP), which is still efficiently solvable. But the critical issue is that

Q(I, r) has high local sensitivity, as illustrated in the following example.

Example 6.3.1. Consider the query in Example 1.2.1 with GROUP BY OrderDate. Suppose

there are only two different dates on OrderDate, so we have just d = 2 queries. Consider

an instance I that has N/2 suppliers s1, s2, · · · sN/2 and N/2 customers c1, c2, · · · cN/2.

Each lineitem is purchased by one customer and supplied by a supplier, and the detailed

construction is shown in Figure 6.1, where solid lines denote the lineitems on day 1 and

102

lineitems on day 2supplier customer lineitems on day 1

Figure 6.1: An example showing Q(I, r) has large sensitivity.

dashed lines for day 2. Next, we construct I′ by deleting s1 (and the associated lineitem)

and construct I′′ by further deleting cN/2. Note that we have I ∼ I′ ∼ I′′.

Suppose we set r = 1. We see that ∥Q(I, 1)∥ is maximized by keeping all lineitems on

day 1, yielding Q(I, 1) = (N/2, 0), while ∥Q(I′′, 1)∥ is maximized by keeping all lineitems

on day 2, yielding Q(I′′, 1) = (0, N/2 − 1). We see that although ∥Q(I, 1)∥ − ∥Q(I′′, 1)∥

is small, ∥Q(I, 1) −Q(I′′, 1)∥ is large, which means that one of ∥Q(I, 1) −Q(I′, 1)∥ and

∥Q(I′, 1) −Q(I′′, 1)∥ must be large. Fundamentally, the reason is that although the LP

(or QP) has low sensitivity in its optimal value ∥Q(I, r)∥, it does not necessarily imply a

low sensitivity on the optimal vector solution Q(I, r), except in one dimension. However,

the Gaussian mechanism needs a low sensitivity on Q(I, r), not ∥Q(I, r)∥.

6.3.2 An Exponential-time Algorithm

To address the issue above, we take a different approach to defining Q(I, r) so that it

has bounded sensitivity. First, define

E(I, r) := max
I′′⊆I,DSQ(I′′)≤r

|I′′(RP)|,

i.e., the maximum number of users in any induced sub-instance of I such that no user’s

contribution is more than r in ℓ2 norm. Note that for self-join-free queries, E(I, r) =

Count(I, r). When there are self-joins, we have E(I, r) ≥ Count(I, r), since removing

one user may also reduce the contributions of other users. Exactly due to this reason,

Count(I, r) has unbounded sensitivity for self-joins, which is why our self-join-free algo-

rithm no longer works. On the other hand, we will show that E(I, r) has sensitivity 1,

as desired. However, computing E(I, r) can take exponential time: Even for the simple

query J = Edge(A, B) ⋊⋉ Node(A) ⋊⋉ Node(B) with ψ(q) = 1 for all q ∈ J(I) (i.e., counting

103

the number of edges in a graph under node-DP), E(I, r) is exactly the size of the maxi-

mum induced subgraph with degree constraint r, which is a classical NP-hard problem.

We will leave the computational issue to Section 6.3.3, while focusing on privacy for now.

Next, define

F (I, r) := E(I, r)− |I(RP)|,

i.e., −F (I, r) is the minimum number of users that need to be removed so that the

contribution from any user is at most r. The following lemma is obvious:

Lemma 6.3.1. For any r and any I, F (I, r) ≤ 0. If r ≥ DSQ(I), then F (I, r) = 0.

More importantly, we show that F (I, r) has sensitivity 1:

Lemma 6.3.2. For any r and any I ∼ I′, I′ ⊆ I, we have

F (I′, r)− 1 ≤ F (I, r) ≤ F (I′, r).

Proof. Let N ′ = |I′(RP)| and I(RP) = I′(RP)∪ tN(I). On one hand, it is trivial to see for

any r ≥ 0, E(I, r) ≥ E(I′, r) since any I′′ ⊆ I′ also has I′′ ⊆ I.

On the other hand, given any r ≥ 0, let

I∗ = arg max
I′′⊆I,DSQ(I′′)≤r

|I′′|.

Then, we can construct a I∗′ from I∗ by deleting all tuples referencing tN(I). Then,

I∗′ ⊆ I′, DSQ(I∗′) ≤ DSQ(I∗) ≤ r and |I∗′(RP)| = |I∗(RP)| − 1. And this further means,

E(I′, r) ≥ E(I, r)− 1.

Finally, combining N = N ′ + 1, the lemma follows.

Because F (I, r) has sensitivity 1, we can feed F (I, 1), F (I, 2), F (I, 4), . . . into SVT with

threshold −O (log(1/β)/ε). Using a similar argument as for our self-join-free algorithm,

we can show that this will return an r̃ that is close to DSQ(I).

It turns out that E(I, r) is not only useful for finding the truncation threshold r̃, it also

yields a new definition of the truncated query answer Q(I, r) with bounded sensitivity.

For any r ≥ 0, define

Q(I, r) := Q(I∗(r)), where I∗(r) = arg max
I′′⊆I,DSQ(I′′)≤r

|I′′(RP)| . (6.4)

104

Note that I∗(r) may not be unique. In this case, we use an arbitrary tie-breaker (e.g., the

I′′ with the lexicographically smallest user IDs) to fix an I∗(r).

Example 6.3.2. Following the Example 6.3.1 and assuming N = 6c for some c ∈ N, for

I, when r = 1, we have E(I, 1) = 2N/3, I∗(1) is obtained by deleting s3∗i−1’s and c3∗i’s

for all i ∈ [N/6], and Q(I, 1) = (N/6, N/6). When r ≥ 2, E(I, r) = N , I∗(r) = I, and

Q(I, r) = (N/2, N/2− 1). Meanwhile, for I′′, when r = 1, we have E(I′′, 1) = 2N/3− 1,

I∗
′′
(1) is obtained by deleting c3∗i−1’s for all i ∈ [N/6] and s3∗j+1’s for all j ∈ [N/6 − 1],

and Q(I′′, 1) = (N/6 − 1, N/6). When r ≥ 2, E(I′′, r) = N − 2, I∗
′′
(r) = I′′, and

Q(I′′, r) = (N/2− 2, N/2− 1).

We bound the local sensitivity of Q(I, r) as follows.

Lemma 6.3.3. Given r ≥ 0, for any I ∼ I′,

∥Q(I, r)−Q(I′, r)∥ ≤ (−2F (I, r) + 2) · r.

Proof. Here, we first consider the case I(RP) = I′(RP) ∪ {tN(I)}.

For convenience, let

I∗ = arg max
I′′⊆I,DSQ(I′′)≤r

∥I′′(RP)∥,

I∗
′

= arg max
I′′⊆I′,DSQ(I′′)≤r

∥I′′(RP)∥.

And define

I∗∩ = I∗ ∩ I∗
′
.

First, by definition,{
|I(RP) \ I′(RP)| ≤ 1

|I′(RP) \ I∗′(RP)| ≤ −F (I′, r)
⇒ |I(RP) \ I∗′(RP)| ≤ −F (I′, r) + 1.

Further recall I∗ ⊆ I, we have

|I∗(RP) \ I∗′(RP)| ≤ −F (I′, r) + 1,

which means

|I∗(RP) \ I∗∩(RP)| ≤ −F (I′, r) + 1.

Recall DSQ(I∗) ≤ r,

∥Q(I∗)−Q(I∗∩)∥ ≤ (−F (I′, r) + 1) · r. (6.5)

105

Algorithm 6: Exponential-time mechanism for multiple queries with self-joins.

Input: ε, δ, β

1 ĩ← SVT
(
−30

ε
log(6/β), ε

5
, F (I, 20), F (I, 21), . . .

)
;

2 r̃ ← 2ĩ−1;

3 T ← −2F (I, r̃) + 2;

4 T̂ ← T + Lap(5
ε
) + 5

ε
log(e3ε/5/δ);

5 Q̃(I)← Q(I, r̃) + T̂ · σ
(
2ε
5
, δ
2e3ε/5

)
· r̃ ·Y,Y ∼ N (0, Id×d);

6 return Q̃(I);

Symmetrically, we have

∥Q(I∗
′
)−Q(I∗∩)∥ ≤ −F (I, r) · r. (6.6)

Combining Lemma 6.3.2, (6.5), (6.6), the claim follows.

Similarly, for the other case, where I′(RP) = I(RP) ∪ {tN+1(I
′)}, we have,

∥Q(I∗)−Q(I∗∩)∥ ≤ −F (I′, r) · r,

∥Q(I∗
′
)−Q(I∗∩)∥ ≤ (−F (I, r) + 1) · r.

With a similar argument, the claim also follows.

Note that Lemma 6.3.3 does not imply a small sensitivity for all r. In particular, if

r is very small, −F (I, r) can be as large as N , resulting in the same issue as in Example

6.3.1. However, the crucial difference here is that we will only use an r̃ returned by the

SVT, which has −F (I, r̃) = Õ(1) with high probability. We can further add a Laplace

noise to it so that it becomes a high-probability DP upper bound on the local sensitivity,

and then apply the second-order Gaussian mechanism. The detailed algorithm is shown

in Algorithm 6.

Theorem 6.3.1. For any ε, δ, β > 0, and any I, Algorithm 6 satisfies (ε, δ)-DP and

returns a Q̃(I) such that with probability at least 1− β,

∥Q̃(I)−Q(I)∥

=O

(√
d log(1/β) log(eε/δ)

ε2
·DS(I) ·

(
log

log(DS(I))

β
+ log(eε/δ)

))
.

Proof. Privacy: By Lemma 6.3.2, each F (I, ·) has the sensitivity 1 thus line 1 and line 4

consume ε
5

and 2ε
5

privacy budget respectively. By composition theory, T̂ preserves 3ε
5

-DP

106

and by the tail bound of Laplace distribution, with probability at least 1− δ
2eε/5

, T̂ ≥ T .

By Lemma 6.1.2, Q̃(I) preserves (ε, δ)-DP.

Below we prove the utility bound. First, by Lemma 4.1.3, with probability at least

1− β
3
,

−F (I, r̃) = O

(
1

ε
log

log(DS(I))

β

)
, (6.7)

and

r̃ ≤ 2 ·DS(I). (6.8)

Second, by (6.7) and the definitions of DS(I) and Q(I, r̃),

∥Q(I)−Q(I, r̃)∥ = O

(
DS(I)

ε
log

log(DS(I))

β

)
. (6.9)

Third, by (6.7) and the tail bound of Laplace distribution, with probability at least

1− β
3
,

T̂ = O

(
1

ε
log

log(DS(I))

β
+

1

ε
log(eε/δ)

)
. (6.10)

Then, combine (6.8), (6.10) and the tail bound of Gaussian distribution, we have with

probability at least 1− β
3
,∥∥∥Q̃(I)−Q(I∗)
∥∥∥

=O

(√
d log(1/β) log(eε/δ)

ε2
·DS(I) ·

(
log

log(DS)

β
+ log(eε/δ)

))
. (6.11)

Finally, the theorem follows by combining (6.9) and (6.11).

6.3.3 A Polynomial-time Algorithm

In this section, we show how to reduce the running time of Algorithm 6 to polynomial

without affecting its utility bound. The computational bottleneck is E(I, r). We bor-

row a popular technique from approximation algorithms: formulate E(I, r) as an integer

program, and solve its relaxed version.

Observe that any I′′ ⊆ I is specified by the users in I′′(RP). We introduce a variable

yi ∈ {0, 1} to indicate whether the i-th user is included in I′′(RP). The objective is

107

thus to maximize
∑

i yi. To link the yi’s with the join results, we introduce a variable

zk,j ∈ {0, 1} to indicate whether the join result qk,j(I) ∈ Jk(I′′), for k ∈ [d], j ∈ [Mk(I)].

Recall qk,j(I) ∈ Jk(I′′) if and only if for any i ∈ Dk,j(I), ti(I) ∈ I′′(RP). To capture this

requirement, we add the following constraint:

zk,j ≥
∑

i∈Dk,j(I)

yi − |Dk,j(I)|+ 1, k ∈ [d], j ∈ [Mk].

Note that the RHS is equal to 1 if yi = 1 for all i ∈ Dk,j(I) and 0 otherwise.

Next, we need to express the constraint DSQ(I′′) ≤ r. Recall DSQ(I′′) = maxi ∥Si(I
′′)∥,

where Si(I
′′) = (S1,i(I

′′), . . . , Sd,i(I
′′)). Plugging (6.3) into the constraint DSQ(I′′) ≤ r

turns it into ∑
k∈[d]

 ∑
j∈Ck,i(I)

(ψk,j(I) · zk,j)

2

≤ r2, i ∈ [N].

Therefore, E(I, r) is the optimal solution of the following integer program:

max
∑
i∈[N]

yi,

s.t. zk,j ≥
∑

i∈Dk,j(I)

yi − |Dk,j(I)|+ 1, k ∈ [d], j ∈ [Mk]

∑
k∈[d]

 ∑
j∈Ck,i(I)

(ψk,j(I) · zk,j)

2

≤ r2, i ∈ [N],

yi ∈ {0, 1} i ∈ [N],

zk,j ∈ {0, 1} k ∈ [d], j ∈ [Mk].

By relaxing the integral constraint to yi ∈ [0, 1], zk,j ∈ [0, 1], this program turns into a

QCQP. Note that only convex QCQPs can be solved efficiently, which is indeed the case

for our QCQP, by observing that the quadratic constraint is positive semi-definite.

Let {y∗i }i, {z∗k,j}k,j be the optimal fractional solution of this QCQP, and let Ê(I, r) =∑
i y

∗
i . In approximation algorithms, one would then try to round {y∗i }i, {z∗k,j}k,j into

integers, and show that the rounded solution is not too far away from Ê(I, r). However,

for the private query answering problem, there is no need to do the rounding as we

will not return the join results anyway. Instead, we only need to return the privatized

108

aggregated query answer. On the other hand, we must show that Ê(I, r) preserves the

three important sensitivity properties of E(I, r), namely, Lemma 6.3.1–6.3.3.

Letting F̂ (I, r) = Ê(I, r)− |I(RP)|. The first property is trivial:

Lemma 6.3.4. For any r and any I, F̂ (I, r) ≤ 0. If r ≥ DSQ(I), then F̂ (I, r) = 0.

Now we prove that F̂ (I, r) also has sensitivity 1.

Lemma 6.3.5. For any r and any I ∼ I′, I′ ⊆ I, we have

F̂ (I′, r)− 1 ≤ F̂ (I, r) ≤ F̂ (I′, r).

Proof. Let I(RP) = I′(RP)∪ tN(I). Assume that the join results referencing tN(I) are put

at the end of J(I), i.e., for every k ∈ [d], Ck,i(I) = {Mk − |Ck,i(I)|+ 1, . . . ,Mk − 1,Mk}.

Let {y∗i }i, {z∗k,j}k,j and {y∗′i }i, {z∗
′

k,j}k,j be the optimal fractional solutions of the QCQP

on I and I′, respectively. On one hand, from {y∗′i }i, {z∗
′

k,j}k,j, we can construct a valid

solution of the QCQP for I by setting y∗
′

N = 0, z∗
′

k.j = 0 for any k ∈ [d], j ∈ Ck,N(I). Thus,

the optimal QCQP solution on I can only be higher.

On the other hand, by removing y∗N , z∗k,j for any k ∈ [k], j ∈ Ck,N(I) for all k ∈ [k],

from {y∗i }i, {z∗k,j}k,j, we can obtain a valid solution of the QCQP on I′. On this solution,

we have
∑

i∈[N−1]] y
∗
i = E(I, r)−y∗N ≥ E(I, r)−1, which implies that Ê(I′, r) ≥ Ê(I, r)−1.

Finally, combining with N = N ′ + 1, the lemma follows.

Lastly, we show how the optimal fractional solution {y∗i }i, {z∗k,j}k,j also leads to a

Q̂(I, r) with bounded local sensitivity as in Lemma 6.3.3. First, it is easy to see that

there must exist an optimal solution in which the constraint on each z∗k,j is tight, i.e.,

z∗k,j = max

0,
∑

i∈Dk,j(I)

y∗i − |Dk,j(I)|+ 1

 . (6.12)

If not, we could lower z∗k,j to make it tight without violating the quadratic constraint or

changing the objective. If there are still multiple optimal fractional solutions, we pick one

using an arbitrary tie-breaker. Then, we define Q̂(I, r) as the query answers using the

optimal fractional solution, i.e.,

Q̂(I, r) = Q(I∗) = (Q1(I
∗), Q2(I

∗), . . . , Qd(I
∗)) ,

where Qk(I∗) =
∑

j∈[Mk]

(
z∗k,j · ψk,j(I)

)
, k ∈ [d]. (6.13)

109

Example 6.3.3. Following the Example 6.3.2, when r = 1, for both I and I′, we have

all zk,j =
√

2/2, and all yi =
√

2/4 + 1/2, thus Ê(I, 1) =
√

2N/4 + N/2, Q̂(I, 1) =

(
√

2N/4,
√

2N/4−
√

2/2), Ê(I′′, 1) =
√

2N/4+N/2, and Q̂(I′′, 1) = (
√

2N/4−
√

2,
√

2N/4−
√

2/2). When r ≥ 2, for both I and I′, we have all zk,j = 1, and all yi = 1, thus Ê(I, r) =

N , Q̂(I, 1) = (N/2, N/2− 1), Ê(I′′, 1) = N − 2, and Q̂(I′′, 1) = (N/2− 2, N/2− 1).

We now bound the local sensitivity of Q̂(I, r):

Lemma 6.3.6. Given any r ≥ 0, for any I ∼ I′,∥∥∥Q̂(I, r)− Q̂(I′, r)
∥∥∥ ≤ (−2F̂ (I, r) + 2

)
· r.

Proof. We consider the case I(RP) = I′(RP)∪{tN(I)} and the other case can been shown

similarly as the proof of Lemma 6.3.3. And similarly as the proof of Lemma 6.3.5, we

assume the join results corresponding the tN(I) are put at the end.

For I, we have {y∗i }i, {z∗k,j}k,j, and Q(I∗) constructed as Ê(I, r), (6.12), and (6.13).

For I′, we have {y∗′i }i, {z∗
′

k,j}k,j, and Q(I∗
′
). To unify the size of {y∗i }i and {y∗′i }i, we

append one zero at the end of {y∗′i }i. And we process similarly for {z∗′k,j}k,j.

By definition of F̂ (I, r) and {y∗i }i, we have

N −
∑
i∈[N]

y∗i = −F̂ (I, r). (6.14)

And similarly, we have

N −
∑
i∈[N]

y∗
′

i = −F̂ (I′, r) + 1 ≤ −F̂ (I, r) + 2, (6.15)

where the inequality is by Lemma 6.3.5.

110

By this setting, we have∥∥∥Q(I∗)−Q(I∗
′
)
∥∥∥

=

√√√√√∑
k∈[d]

 ∑
j∈[Mk]

(
z∗

′
k,j − z∗k,j

)
· ψk,j(I)

2

≤

√√√√√∑
k∈[d]

 ∑
j∈[Mk]

(
z∗

′
k,j − z∗k,j

)
· ψk,j(I) · I

(
z∗k,j < z∗

′
k,j

)2

+

√√√√√∑
k∈[d]

 ∑
j∈[Mk]

(
z∗k,j − z∗

′
k,j

)
· ψk,j(I) · I

(
z∗k,j > z∗

′
k,j

)2

. (6.16)

For any k ∈ [d], j ∈ [Mk] such that z∗k,j < z∗
′

k,j, we have

z∗
′

k,j − z∗k,j ≤z∗
′

k,j − z∗k,j · z∗
′

k,j

=
(
1− z∗k,j

)
· z∗′k,j

≤
∑

i∈Dk,j(I)

(1− y∗i) · z∗′k,j. (6.17)

The first line is by z∗
′

k,j ≤ 1. The last line is by (6.12).

111

Then, we have√√√√√∑
k∈[d]

 ∑
j∈[Mk]

(
z∗

′
k,j − z∗k,j

)
· ψk,j(I) · I

(
z∗k,j < z∗

′
k,j

)2

≤

√√√√√∑
k∈[d]

 ∑
j∈[Mk]

∑
i∈Dk,j(I)

(1− y∗i) · z∗′k,j · ψk,j(I) · I
(
z∗k,j < z∗

′
k,j

)2

≤

√√√√√∑
k∈[d]

 ∑
j∈[Mk]

∑
i∈Dk,j(I)

(1− y∗i) · z∗′k,j · ψk,j(I)

2

≤
∑
i∈[N]

(1− y∗i) ·

√√√√√∑
k∈[d]

 ∑
j∈Ck,i(I)

z∗
′

k,j · ψk,j(I)

2

≤
∑
i∈[N]

(1− y∗i) · r

≤− F̂ (I, r) · r (6.18)

The second line is by (6.17). The fourth line is by the triangle inequality under ℓ2 distance

metric. The last line is by (6.14).

Similarly, with (6.15), we can show,√√√√√∑
k∈[d]

 ∑
j∈[Mk]

(
z∗k,j − z∗

′
k,j

)
· ψk,j(I) · I

(
z∗k,j > z∗

′
k,j

)2

≤
(
−F̂ (I, r) + 2

)
· r (6.19)

Finally, combining (6.16), (6.18), and (6.19), the lemma follows.

Our polynomial-time algorithm is thus the same as Algorithm 6, except that F (I, r)

and Q(I, r) are replaced by F̂ (I, r) and Q̂(I, r), respectively. Below we show that this

replacement does not affect its privacy or utility:

Theorem 6.3.2. For any ε, δ, β > 0 and any I, the polynomial-time version of Algorithm

112

6 preserves (ε, δ)-DP, and returns a Q̃(I) such that with probability at least 1− β,∥∥∥Q̃(I)−Q(I)
∥∥∥

=O

(√
d log(1/β) log(eε/δ)

ε2
·DS(I) ·

(
log

log(DS)

β
+ log(eε/δ)

))
.

Proof. The privacy analysis remains the same as in the proof of Theorem 6.3.1, since

F̂ (I, r) and Q̂(I, r) have the same sensitivity properties as F (I, r) and Q(I, r). Below we

analyze the utility.

First, by Lemma 4.1.3 and 6.3.1, with probability at least 1− β
3
,

−F̂ (I, r̃) = O

(
1

ε
log

log(DS(I))

β

)
, (6.20)

and r̃ ≤ 2 ·DS(I).

By the difference between ExpPrivMultiSJA and PolyPrivMultiSJA, we only need to

bound the bias ∥∥∥Q(I)− Q̂(I, r̃)
∥∥∥ = O

(
DS(I)

ε
log

log(DS(I))

β

)
. (6.21)

Let {y∗i }i = Sol
(
Ê(I, r̃)

)
. And we construct {z∗k,j}k,j and Q(I∗) as (6.12) and (6.13).

By (6.20),

N −
∑
i

y∗i = O

(
1

ε
log

log(DS(I))

β

)
. (6.22)

Then, we increment {y∗i }i to one vector, i.e. all elements equal to 1, and update

the corresponding {z∗k,j}k,j, Q(I∗) iteratively. For convenience, we use the subscript to

denote the iteration and let {y∗i }i, {z∗k,j}k,j and, Q(I∗) be the ones for iteration 0, i.e,

{y∗(0)i }i = {y∗i }i, {z
∗(0)
k,j }k,j = {z∗k,j}k,j, and

Q(I∗(0)) = Q(I∗). (6.23)

At iteration i ∈ [N], we increment y
∗(i)
i from y∗i to 1. Then, we set {z∗(i)k,j }k,j and

Q(I∗(i)) as (6.12) and (6.13). With setting, we have

113

∥Q(I∗(i))−Q(I∗(i−1))∥

=

√√√√ d∑
k=1

(
Mk∑
j=1

(
z
∗(i)
k,j − z

∗(i−1)
k,j

)
· ψk,j(I)

)2

=

√√√√√ d∑
k=1

 ∑
j∈Ck,i(I)

(
z
∗(i)
k,j − z

∗(i−1)
k,j

)
· ψk,j(I)

2

≤

√√√√√ d∑
k=1

 ∑
j∈Ck,i(I)

(1− y∗i) · ψk,j(I)

2

= (1− y∗i) ·

√√√√√ d∑
k=1

 ∑
j∈Ck,i(I)

ψk,j(I)

2

≤ (1− y∗i) ·DSQ(I). (6.24)

The third line is because, at ith iteration, for any k ∈ [d], z
∗(i)
k,j will not be updated if

j /∈ Ck,i(I). The fourth line is by (6.12). The last line is by the definition of DSQ(I).

After all iterations, we have all y
∗(N)
i = 1 thus

Q(I∗(N)) = Q(I). (6.25)

Summing up (6.24) for all i and combining (6.23) and (6.25), we get (6.21). Finally,

with a similar process as the proof of Theorem 6.3.1, the claim follows.

6.4 System Implementation

Our algorithm can be implemented on top of any SQL engine and a QCQP solver.

For our system prototype, we use PostgreSQL and MOSEK.

The first step is to extract {Ck,i}k,i, {Dk,j}k,j from the join results. Note that the

original query does not output this information, so the first step is to rewrite the query so

that it also includes the PKs of the private entities, as illustrated in the following example.

114

Example 6.4.1. Consider Q5 of TPC-H benchmark:

SELECT nation name, SUM(price ∗ (1− discount))

FROM Supplier, Lineitem, Orders, Customer, Nation

WHERE ... GROUP BY nation name

We rewrite it as

SELECT nation name, Supplier.SK, Customer.CK,

price ∗ (1− discount)

FROM Supplier, Lineitem, Orders, Customer, Nation

WHERE ...

From the results of the rewritten query, we then construct a series of QCQPs and

feed them into the SVT. Note that these QCQPs only differ in the value of r. The SVT

returns an r̃, F̂ (I, r̃), and the corresponding optimal fractional solution, from which we

construct Q̂(I, r̃). Finally, we add Gaussian noise to Q̂(I, r̃).

Algorithm 7: SVT with jump start

Input: T , ε, k, and a sequence of sensitivity-1 queries f1(I), f2(I), . . .

1 T̃ ← T + Lap(2/ε);

2 f̂ ′ =∞;

3 for ℓ← k, k − 1, . . . , 1 do

4 vℓ ← Lap(4/ε);

5 if f ′ + vℓ < T̃ then

6 fℓ(I)← f ′;

7 else

8 Compute fℓ(I);

9 f ′ ← fℓ(I);

10 end

11 end

12 for ℓ← 1, 2, . . . do

13 if ℓ > k then

14 vℓ ← Lap(4/ε);

15 Compute fℓ(I);

16 end

17 if fℓ(I) + vℓ ≥ T̃ then

18 return ℓ;

19 end

20 end

115

Optimizations We observe that the computational bottleneck is to solve the series of

QCQPs. To make them more efficient, we use the following two techniques. First, for

each QCQP, we rewrite it into a conic programming, which is then solved by MOSEK

with a homogeneous primal-dual algorithm. It turns out that solving the QCQP this way

is much more efficient in practice.

The second technique reduces the number of QCQPs we have to solve. We observe

that as we increase r, the optimal solutions of the QCQPs, hence the F̂ (I, r)’s, are mono-

tonically increasing. Recall that SVT returns the first r = 2ℓ such that F̂ (I, 2ℓ) + vℓ ≥ T̃ ,

where vℓ is a Laplace noise. Since the first few F̂ (I, 2ℓ)’s are unlikely to go above the

threshold, our idea is to give a “jump start” to the SVT by skipping those QCQPs. Let

2k be the smallest power of 2 no less than DS(I). By our analysis in the proof of Theorem

6.3.1, the SVT is likely to stop around r = 2k. Our idea is then to first generate vℓ for all

ℓ = 1, . . . , k in advance, but only compute an F̂ (I, 2ℓ) if it has a chance to be above T̃ after

adding vℓ. By going backward from 2k to 1 and exploiting the monotonicity of F̂ (I, 2ℓ),

this can eliminate many of them from having to be computed. The detailed algorithm is

shown in Algorithm 7. Note that Algorithm 7 is nothing but a more efficient execution

of the original SVT, so its privacy and utility guarantees remain the same. Furthermore,

this technique can be applied to any SVT instantiation with a sequence of monotonic

queries f1(I), f2(I), . . . , as long as there is a good guess k on the likely stopping position

(note that k can depend on private information), so we present Algorithm 7 in a more

generic form.

Primary private relation

Group by attributeAggregation attribute

Select attribute

TPC-H Queries Graph Pattern Counting Queries

Figure 6.2: The structure of queries.

116

6.5 Experiments

In this section, we report our experimental results comparing our algorithm (denoted

PMSJA) with state-of-the-art algorithms for answering SJA queries with group-by over

both benchmark and real-world datasets. For self-join-free queries, we compare with

OptMean [46]; for queries with (implicit) self-joins, we compare with R2T [27] combined

with advanced composition [38].

6.5.1 Setup

Datasets We use two types of datasets: TPC-H and Stack Overflow network dataset.

The TPC-H schema has been discussed before and is shown in Figure 5.4. We use datasets

with scale 0.125, 0.25, . . . , 8. The default scale is 2, where there are about 15 million tuples.

The Stack Overflow network dataset is from SNAP [58] and records users’ interac-

tions on the Stack Overflow website. Here, each node represents one user and the in-

teractions are stored as edges with a timestamp. We use two graphs, corresponding

to answer-to-question (a2q) and comment-to-answer (c2a), respectively. They contain

2,464,606 nodes, 17,823,525 edges, and 1,646,338 nodes, 25,405,374 edges, respectively.

We have deleted the top 10% nodes with the highest degrees, as protecting their pri-

vacy would introduce too much error. The number of edges of stackoverflow − a2q and

stackoverflow − c2a are then reduced to 1,468,092 and 1,425,352.

Queries We use 8 queries over TPC-H schema. The first two are self-join-free queries

while the others are self-join queries. The query structures are shown in Figure 6.2. Some

of the queries are taken directly from TPC-H benchmark while others are designed to test

the algorithms under various settings, in particular different combinations of primary pri-

vate relations and counting queries are used. Furthermore, for the same TPC-H query, we

may use different group-by attributes. That is also to test algorithm under more settings:

Different group-by attributes lead to different group sizes d and different data distribu-

tions in groups. Another reason is that TPC-H queries have too many or too few groups

, i.e., for TPC-H query Q7, if adding predicates, there are only 8 groups while removing

the predicates will lead to thousands of groups. Therefore, we removed the predicates and

used a subset of group-by attributes to get a good d. More precisely, both Q1, Q2 corre-

spond to TPC-H query Q10 where Customer is assigned as the primary private relation

117

but use different group-by attributes. Q3 corresponds to TPC-H query Q5. Q4 and Q5

correspond to TPC-H query Q7 but with different group-by attributes. All these three

queries have Customer and Supplier as the primary private relations. Finally, Q6, Q7,

and Q8 provide more primary private relation combinations: {PartSupp,Customer} and

{PartSupp,Orders}.

For the group-by attributes, we use date attribute or/and nation attribute. There are

three cases. In the first case, we use the nation attribute and it has 25 groups. In the

second case, we use the date, where we select 100 dates with each one corresponding to

one group. We also conduct experiments with various grouping, which will be discussed

later. Furthermore, we also use their combinations to make the group: we group the

query results by nation and month. To avoid the heavy computations brought by the

large group size, we only select two months and the group size here is 50. The group size

for each query is shown in the head of Table 6.1.

In another dimension, Q2, Q6, Q7 are counting queries while the others do the sum

aggregation over extendedprice and discount attributes in Lineitem relation. The

numbers shown are in thousands.

For graph pattern counting queries, we use edge counting query Q1−, length-2 path

counting query Q2−, and length-3 path counting query Q3−. We take the groups on the

time attribute on the first edge. Here, we have 10 groups and each group has several

dates. Each group in Q1−, Q2−, and Q3− has 40, 80, 220 dates respectively.

Experimental parameters We conduct all experiments on a Linux server with a 24-

core 48-thread 2.2GHz Intel Xeon CPU and 256GB memory. Each program is allowed to

use at most 24 threads. We use ℓ2 metric in the report of query result and the error and

we call one mechanism has utility and high utility if the relative error is below 50% and

30% respectively. Each experiment is repeated 20 times and we remove 4 largest errors

and 4 smallest errors and report the average error for the rest 12 runs. For the privacy

budgets, we use ε = 2, 4, 8 and the default value is set to 4. Compared with the work of

answering single query [48, 76, 29, 31, 27], we use larger ε. That is because answering

multiple queries is much more complex and we need larger ε to guarantee the utility [1].

We set δ to 1e-7 and the failure probability β to 0.1. Both OptMean and R2T require an

GSQ as the input parameter. For TPC-H queries, we set GSQ to 1e6. For graph pattern

118

Query type Self-join-free queries Self-join queries

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Group size d 100 25 25 50 100 25 50 100

Query result
ℓ2 norm 1,820,000 2,400,000 3,480,000 1,830,000 1,820,000 59,000 43,800 1,820,000

Time(s) 1.33 4.58 3.85 2.62 1.66 2.12 2.21 3.56

JMSJA
Error(%) 0.504 0.0644 24.6 18.5 20.0 12.4 21.9 10.2

Time(s) 12.5 75.4 562 4683.8 3056.8 36.3 35.8 68.5

R2T/OptMean
Error(%) 1.2 0.138 99.6 83.7 87.6 56.1 85.7 82.5

Time(s) 6 65.2 20.7 30.1 24.1 12.0 15.3 26.1

Table 6.1: Comparison between PMSJA and state-of-the-art algorithms (OptMean [46]

for self-join-free queries and R2T [27] for self-join queries) on TPC-H queries with group-

by operator. We use data scale equal to 2, ε = 4 and report the relative error.

Dataset stackoverflow − a2q stackoverflow − c2a

Query
Q1− Q2− Q3− Q1− Q2− Q3−

Error(%) Time(s) Error(%) Time(s) Error(%) Time(s) Error(%) Time(s) Error(%) Time(s) Error(%) Time(s)

Query Result 48,000 0.735 41,400 1.3 49,500 1.78 34,900 0.61 50,100 1.11 106,000 1.57

PMSJA 5.56 27.3 23 41.4 35.5 81.3 11.7 16 24.8 60.8 36.7 1,943

R2T 13.9 10.7 58.5 10.6 81 12.8 22.3 8.67 60.6 11 77.5 19.5

Table 6.2: Comparison between PMSJA and R2T [27] on graph pattern counting queries

with d = 10 on different networks. We use ε = 4 and report relative error.

counting queries, we set a degree upper bound of D = 1, 000, 000 and set GSQ as the

maximum number of graph patterns containing any node, i.e., GSQ1− = D, GSQ2− = D2,

and GSQ3− = D3.

6.5.2 Experimental Results

Compare with state-of-the-art algorithms We conduct the experiments on the

TPC-H dataset and graph data to compare PMSJA with OptMean and R2T and the

results are shown in Table 6.1 and Table 6.2 where we report both error level (relative

error) and running time. For self-join-free cases, OptMean already has very high utility

while PMSJA further reduces this error by more than 50%. This matches our theoretical

analyses: PMSJA improves OptMean by a log factor and both of them match the lower

bound up to log factors. For efficiency, PMSJA uses a bit more time than OptMean but

they are nearly at the same level. That is because, for self-join-free queries, they have

very similar processes: extracting the relationship between users and join results first and

then finding some threshold to do the clipping with sub-linear time.

Then, we talk about the results of 12 self-join queries and make a comparison between

PMSJA with R2T. For the utility, PMSJA has high utility (relative error below 30%) in all

12 queries except the two Q3−, in which PMSJA still has the utility (relative error below

50%). Meanwhile, R2T only has utility in two Q1− queries, where the group size is small,

119

105

106

Er
ro

r L
ev

el
PMSJA R2T Query result

105

106

105

106

12 25 50 100 200 400
d

100

101

102

Ru
nn

in
g

Ti
m

e(
s)

= 2

12 25 50 100 200 400
d

100

101

102

= 4

12 25 50 100 200 400
d

100

101

102

= 8

Figure 6.3: Running times and error levels of PMSJA and R2T for Q3 with different d

and ε.

i.e., d = 10. More precisely, for TPC-H queries, the error level of R2T is 3.91× ∼ 8.1×

of PMSJA and a larger d is more likely to lead to a larger gap. For the graph pattern

counting queries where d = 10, that ratio is reduced to 1.91× ∼ 2.53×. That confirms our

theoretical analysis that PMSJA has
√
d improvement over R2T and matches the lower

bound up to log factors. For efficiency, as mentioned before, PMSJA solves several convex

QCQP’s and needs much more running time than R2T, which only solves a number of

LPs. However, as the experiments show, in more than half of the cases (8/12), the running

time of PMSJA is not much larger than R2T (less than 8×), although it can be much

longer in the worst case.

Number of queries To further examine the effects of the change of number of queries

d, we use Q3 but more/fewer dates so we can have different d’s. More precisely, we run

it with d = 12, 25, 50, . . . , 400 on the TPC-H dataset with scale 2 and ε is set to 2, 4, 8.

We plot both error levels and running times in Figure 6.3, where we also plot the ℓ2 norm

of the query result and its running time. For the error level, first, it is not surprising to

see, PMSJA always has an error lower than R2T. As d increases, the error of PMSJA

decreases at the same rate as that of the query result: both of them increase with
√
d.

Meanwhile, for R2T, its error level increases linearly with d before it catches up with the

query result (see the figure with ε = 8). One interesting finding is, when R2T’s catches

up with the query result, it increases at the same rate as the query result and will not

surpass that (see the figures with ε = 2 and ε = 4). That is because R2T will always

return a noised value between 0 and the real query result thus its error is at most the

120

106

107

Er
ro

r L
ev

el
PMSJA R2T Query result

106

107

106

107

0.125 0.25 0.5 1 2 4 8
Scale

101

103

Ru
nn

in
g

Ti
m

e(
s)

= 2

0.125 0.25 0.5 1 2 4 8
Scale

101

103

= 4

0.125 0.25 0.5 1 2 4 8
Scale

101

103

= 8

(a) Q3

104

105

Er
ro

r L
ev

el

104

105

104

105

0.125 0.25 0.5 1 2 4 8
Scale

100

101

102

Ru
nn

in
g

Ti
m

e(
s)

= 2

0.125 0.25 0.5 1 2 4 8
Scale

100

101

102

= 4

0.125 0.25 0.5 1 2 4 8
Scale

100

101

102

= 8

(b) Q7

Figure 6.4: Running times and error levels of PMSJA and R2T with different queries,

data scales and ε.

query result. However, this does not really have any benefit since we have already lost all

utility when the error level reaches the query result.

On the other hand, we see the running time of real query sub-linearly increases with

d. By contrast, R2T and PMSJA have linear and sup-linear speeds respectively. That

is because R2T runs each query independently and for every single query, increasing d

will only affect the assigned ε, which just brings a minor effect on the running time thus

the running time has a linear dependency on d. Meanwhile, for PMSJA, increasing d

will complicate the convex QCQP’s it solves thus leading to a super-linear effect on the

running time.

Scalability Lastly, we conduct the experiments to see the effects of data scale changes.

We use TPC-H datasets with scale 0.125, 0.2, . . . , 8 and run Q3 and Q7 with ε = 2, 4, 8.

The results are shown in Figure 6.4a and 6.4b.

121

First, the error level of DPSJA barely changes with the data scale. That is because

theoretically, it only depends on DSQ(I), which does not change much by the scale of

TPC-H data. On the other hand, the error level of R2T first increases with query result

but will then stay at some level. That is because its error guarantee also depends on

DSQ(I) and as mentioned before, its error is also bounded by the query result.

For efficiency, both query and R2T have running time that increases linearly with the

data scale while the running time of PMSJA has a super-linear dependency on the data

scale.

122

CHAPTER 7

CONCLUSION

This thesis presents my contributions to answering SQL queries under both the tuple-

DP and user-DP models. Under the tuple-DP framework, I adopt the notion of neigh-

borhood optimality, a fairly strong instance-specific notation, and propose the residual

sensitivity mechanism for answering SPJA queries with an O(1)-neighborhood optimal

error. The residual sensitivity approach exhibits desirable efficiency and can easily be

integrated into any SQL engine. In the user-DP framework, I highlight the limitations of

neighborhood optimality and propose a stronger optimality notation referred to as down-

neighborhood optimality. I first address SA queries and propose a solution that removes

the boundness assumption for the user contribution and leads to an improvement in the

error bound by several logarithmic factors. Then, I extend my work to the general SPJA

queries and propose R2T, the first algorithm for this type of queries. R2T has been

shown to achieve the down-neighborhood optimal error. Finally, I explore the problem of

answering d SJA queries and present a solution that improves the state-of-the-art error

by a factor of
√
d.

Looking forward, two promising avenues for research are outlined. First, most existing

works in answering SQL queries under DP have focused on static data, whereas in practice,

the data are continually updated and the adversary draws a continuous observation of

the query results, presenting new challenges. To date, works [34, 21, 35, 23] have been

limited to addressing counting queries over a single relation under tuple-DP, achieving

error bounds that match the static setting up to logarithmic factors. However, no known

work exists for more complex queries, and while privacy composition is a trivial solution,

it leads to a
√
T -factor reduction in utility compared to the static setting, where T is the

number of time units.

Second, combining DP with secure computation in answering SQL queries is another

interesting direction. Secure computation requires full obliviousness, meaning interme-

diate computations should not leak any information about the input data except for

negligible probabilities. On the other hand, differential privacy can mask the final result,

123

but does not protect intermediate computations. Combining these two notions has the

potential to provide stronger privacy protection, by fully obliviously computing a query

and then running a differential privacy mechanism in a secure environment to mask the

query result. The first step of this combination has been well-researched, but the second

step, especially for answering SQL queries, still requires further exploration.

124

Bibliography

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In Proceedings

of the 2016 ACM SIGSAC conference on computer and communications security,

pages 308–318, 2016.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases, vol-

ume 8. Addison-Wesley Reading, 1995.

[3] Mahmoud Abo Khamis, Hung Ngo, and Dan Suciu. What do shannon-type inequal-

ities, submodular width, and disjunctive datalog have to do with one another? In

Proc. ACM Symposium on Principles of Database Systems, 2017.

[4] Mahmoud Abo Khamis, Hung Q Ngo, and Atri Rudra. Faq: questions asked fre-

quently. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on

Principles of Database Systems, pages 13–28, 2016.

[5] Ishaq Aden-Ali, Hassan Ashtiani, and Gautam Kamath. On the sample complexity

of privately learning unbounded high-dimensional gaussians. In Algorithmic Learning

Theory, pages 185–216. PMLR, 2021.

[6] Kareem Amin, Alex Kulesza, Andres Munoz, and Sergei Vassilvtiskii. Bounding

user contributions: A bias-variance trade-off in differential privacy. In International

Conference on Machine Learning, pages 263–271. PMLR, 2019.

[7] Galen Andrew, Om Thakkar, H Brendan McMahan, and Swaroop Ramaswamy. Dif-

ferentially private learning with adaptive clipping. arXiv preprint arXiv:1905.03871,

2019.

[8] Myrto Arapinis, Diego Figueira, and Marco Gaboardi. Sensitivity of counting queries.

In International Colloquium on Automata, Languages, and Programming (ICALP),

2016.

[9] Hassan Ashtiani and Christopher Liaw. Private and polynomial time algorithms for

learning gaussians and beyond. arXiv preprint arXiv:2111.11320, 2021.

125

[10] Hilal Asi and John C Duchi. Instance-optimality in differential privacy via approx-

imate inverse sensitivity mechanisms. Advances in neural information processing

systems, 33, 2020.

[11] Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans for

relational joins. In 2008 49th Annual IEEE Symposium on Foundations of Computer

Science, pages 739–748. IEEE, 2008.

[12] Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank McSherry,

and Kunal Talwar. Privacy, accuracy, and consistency too: a holistic solution to con-

tingency table release. In Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems, pages 273–282, 2007.

[13] Sourav Biswas, Yihe Dong, Gautam Kamath, and Jonathan Ullman. Coinpress:

Practical private mean and covariance estimation. Advances in Neural Information

Processing Systems, 33, 2020.

[14] Jaroslaw B lasiok, Mark Bun, Aleksandar Nikolov, and Thomas Steinke. Towards

instance-optimal private query release. In Proceedings of the Thirtieth Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 2480–2497. SIAM, 2019.

[15] Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. Differentially private

data analysis of social networks via restricted sensitivity. In Proceedings of the 4th

conference on Innovations in Theoretical Computer Science, pages 87–96, 2013.

[16] Gavin Brown, Marco Gaboardi, Adam Smith, Jonathan Ullman, and Lydia Zakyn-

thinou. Covariance-aware private mean estimation without private covariance esti-

mation. Advances in Neural Information Processing Systems, 34, 2021.

[17] Mark Bun, Gautam Kamath, Thomas Steinke, and Steven Z Wu. Private hypothesis

selection. Advances in Neural Information Processing Systems, 32, 2019.

[18] Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications,

extensions, and lower bounds. In Theory of Cryptography Conference, pages 635–658.

Springer, 2016.

[19] Mark Bun and Thomas Steinke. Average-case averages: Private algorithms for

smooth sensitivity and mean estimation. In Advances in Neural Information Pro-

cessing Systems 32, NeurIPS ’19, pages 181–191. Curran Associates, Inc., 2019.

126

[20] T Tony Cai, Yichen Wang, and Linjun Zhang. The cost of privacy: Optimal rates

of convergence for parameter estimation with differential privacy. arXiv preprint

arXiv:1902.04495, 2019.

[21] T-H Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statis-

tics. ACM Transactions on Information and System Security (TISSEC), 14(3):1–24,

2011.

[22] Shixi Chen and Shuigeng Zhou. Recursive mechanism: towards node differential pri-

vacy and unrestricted joins. In Proceedings of the 2013 ACM SIGMOD International

Conference on Management of Data, pages 653–664, 2013.

[23] Rachel Cummings, Sara Krehbiel, Kevin A Lai, and Uthaipon Tantipongpipat. Dif-

ferential privacy for growing databases. Advances in Neural Information Processing

Systems, 31, 2018.

[24] Wei-Yen Day, Ninghui Li, and Min Lyu. Publishing graph degree distribution with

node differential privacy. In Proceedings of the 2016 International Conference on

Management of Data, pages 123–138, 2016.

[25] Apple Differential Privacy Team. Learning with privacy at scale. https:

//machinelearning.apple.com/docs/learning-with-privacy-at-scale/

appledifferentialprivacysystem.pdf. December 2017.

[26] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. Collecting telemetry data

privately. In NIPS, 2017.

[27] Wei Dong, Juanru Fang, Ke Yi, Yuchao Tao, and Ashwin Machanavajjhala. R2T:

Instance-optimal truncation for differentially privatequery evaluation with foreign

keys. In Proc. ACM SIGMOD International Conference on Management of Data,

2022.

[28] Wei Dong, Dajun Sun, and Ke Yi. Better than composition: How to answer multiple

relational queries under differential privacy. In Proc. ACM SIGMOD International

Conference on Management of Data, 2023.

[29] Wei Dong and Ke Yi. Residual sensitivity for differentially private multi-way joins.

In Proc. ACM SIGMOD International Conference on Management of Data, 2021.

127

https://machinelearning.apple.com/docs/learning-with-privacy-at-scale/appledifferentialprivacysystem.pdf
https://machinelearning.apple.com/docs/learning-with-privacy-at-scale/appledifferentialprivacysystem.pdf
https://machinelearning.apple.com/docs/learning-with-privacy-at-scale/appledifferentialprivacysystem.pdf

[30] Wei Dong and Ke Yi. Universal private estimators. arXiv preprint arXiv:2111.02598,

2021.

[31] Wei Dong and Ke Yi. A nearly instance-optimal differentially private mechanism for

conjunctive queries. In Proc. ACM Symposium on Principles of Database Systems,

2022.

[32] Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In Proceedings

of the forty-first annual ACM symposium on Theory of computing, pages 371–380,

2009.

[33] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise

to sensitivity in private data analysis. In Theory of cryptography conference, pages

265–284. Springer, 2006.

[34] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum. Differential pri-

vacy under continual observation. In Proceedings of the forty-second ACM symposium

on Theory of computing, pages 715–724, 2010.

[35] Cynthia Dwork, Moni Naor, Omer Reingold, and Guy N Rothblum. Pure differential

privacy for rectangle queries via private partitions. In International Conference on

the Theory and Application of Cryptology and Information Security, pages 735–751.

Springer, 2015.

[36] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N Rothblum, and Salil Vadhan.

On the complexity of differentially private data release: efficient algorithms and

hardness results. In Proceedings of the forty-first annual ACM symposium on Theory

of computing, pages 381–390, 2009.

[37] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.

Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

[38] Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. Boosting and differential

privacy. In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science,

pages 51–60. IEEE, 2010.

[39] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor: Randomized ag-

gregatable privacy-preserving ordinal response. In Proceedings of the 2014 ACM

128

SIGSAC conference on computer and communications security, pages 1054–1067,

2014.

[40] R. Fagin, A. Lotem, and M. Noar. Optimal aggregation algorithms for middleware.

Journal of Computer and System Sciences, 66:614–656, 2003.

[41] Juanru Fang, Wei Dong, and Ke Yi. Shifted inverse: A general mechanism for

monotonic functions under user differential privacy. 2022.

[42] Georg Gottlob, Stephanietien Lee, Gregory Valiant, and Paul Valiant. Size and

treewidth bounds for conjunctive queries. Journal of the ACM, 59(3), 2012.

[43] Moritz Hardt, Katrina Ligett, and Frank McSherry. A simple and practical algorithm

for differentially private data release. In Advances in Neural Information Processing

Systems, pages 2339–2347, 2012.

[44] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. Boosting the accuracy

of differentially private histograms through consistency. Proceedings of the VLDB

Endowment, 3(1), 2010.

[45] Samuel B Hopkins, Gautam Kamath, and Mahbod Majid. Efficient mean estimation

with pure differential privacy via a sum-of-squares exponential mechanism. arXiv

preprint arXiv:2111.12981, 2021.

[46] Ziyue Huang, Yuting Liang, and Ke Yi. Instance-optimal mean estimation under

differential privacy. Advances in Neural Information Processing Systems, 2021.

[47] Manas R Joglekar, Rohan Puttagunta, and Christopher Ré. Ajar: Aggregations and

joins over annotated relations. In Proceedings of the 35th ACM SIGMOD-SIGACT-

SIGAI Symposium on Principles of Database Systems, pages 91–106, 2016.

[48] Noah Johnson, Joseph P Near, and Dawn Song. Towards practical differential privacy

for sql queries. Proceedings of the VLDB Endowment, 11(5):526–539, 2018.

[49] Gautam Kamath, Jerry Li, Vikrant Singhal, and Jonathan Ullman. Privately learning

high-dimensional distributions. In Proceedings of the 32nd Annual Conference on

Learning Theory, COLT ’19, pages 1853–1902, 2019.

129

[50] Gautam Kamath, Argyris Mouzakis, Vikrant Singhal, Thomas Steinke, and Jonathan

Ullman. A private and computationally-efficient estimator for unbounded gaussians.

arXiv preprint arXiv:2111.04609, 2021.

[51] Gautam Kamath, Vikrant Singhal, and Jonathan Ullman. Private mean estimation

of heavy-tailed distributions. In Conference on Learning Theory, pages 2204–2235.

PMLR, 2020.

[52] Vishesh Karwa, Sofya Raskhodnikova, Adam Smith, and Grigory Yaroslavtsev. Pri-

vate analysis of graph structure. Proceedings of the VLDB Endowment, 4(11):1146–

1157, 2011.

[53] Vishesh Karwa, Sofya Raskhodnikova, Adam Smith, and Grigory Yaroslavtsev. Pri-

vate analysis of graph structure. ACM Transactions on Database Systems (TODS),

39(3):1–33, 2014.

[54] Vishesh Karwa and Salil Vadhan. Finite sample differentially private confidence

intervals. In 9th Innovations in Theoretical Computer Science Conference (ITCS

2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[55] Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and Adam

Smith. Analyzing graphs with node differential privacy. In Theory of Cryptogra-

phy Conference, pages 457–476. Springer, 2013.

[56] Pravesh K Kothari, Pasin Manurangsi, and Ameya Velingker. Private robust esti-

mation by stabilizing convex relaxations. arXiv preprint arXiv:2112.03548, 2021.

[57] Ios Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour, Ashwin Machanava-

jjhala, Michael Hay, and Gerome Miklau. Privatesql: a differentially private sql

query engine. Proceedings of the VLDB Endowment, 12(11):1371–1384, 2019.

[58] Jure Leskovec and Andrej Krevl. Snap datasets: Stanford large network dataset

collection (2014). URL http://snap. stanford. edu/data, page 49, 2016.

[59] Chao Li, Gerome Miklau, Michael Hay, Andrew McGregor, and Vibhor Rastogi. The

matrix mechanism: optimizing linear counting queries under differential privacy. The

VLDB journal, 24(6):757–781, 2015.

130

[60] Xiyang Liu, Weihao Kong, and Sewoong Oh. Differential privacy and robust statistics

in high dimensions. arXiv preprint arXiv:2111.06578, 2021.

[61] Ashwin Machanavajjhala, Daniel Kifer, John Abowd, Johannes Gehrke, and Lars Vil-

huber. Privacy: Theory meets practice on the map. In 2008 IEEE 24th international

conference on data engineering, pages 277–286. IEEE, 2008.

[62] H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differ-

entially private recurrent language models. arXiv preprint arXiv:1710.06963, 2017.

[63] Frank D McSherry. Privacy integrated queries: an extensible platform for privacy-

preserving data analysis. In Proceedings of the 2009 ACM SIGMOD International

Conference on Management of data, pages 19–30, 2009.

[64] Shanmugavelayutham Muthukrishnan and Aleksandar Nikolov. Optimal private half-

space counting via discrepancy. In Proceedings of the forty-fourth annual ACM sym-

posium on Theory of computing, pages 1285–1292, 2012.

[65] Arjun Narayan and Andreas Haeberlen. Djoin: Differentially private join queries

over distributed databases. In USENIX Symposium on Operating Systems Design

and Implementation, pages 149–162, 2012.

[66] Aleksandar Nikolov, Kunal Talwar, and Li Zhang. The geometry of differential pri-

vacy: the sparse and approximate cases. In Proceedings of the forty-fifth annual ACM

symposium on Theory of computing, pages 351–360, 2013.

[67] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and sam-

pling in private data analysis. In Proceedings of the thirty-ninth annual ACM sym-

posium on Theory of computing, pages 75–84, 2007.

[68] Catuscia Palamidessi and Marco Stronati. Differential privacy for relational algebra:

Improving the sensitivity bounds via constraint systems. In QAPL, 2012.

[69] Venkatadheeraj Pichapati, Ananda Theertha Suresh, Felix X Yu, Sashank J Reddi,

and Sanjiv Kumar. Adaclip: Adaptive clipping for private sgd. arXiv preprint

arXiv:1908.07643, 2019.

[70] Davide Proserpio, Sharon Goldberg, and Frank McSherry. Calibrating data to sen-

sitivity in private data analysis. Proceedings of the VLDB Endowment, 7(8), 2014.

131

[71] Wahbeh Qardaji, Weining Yang, and Ninghui Li. Practical differentially private

release of marginal contingency tables. In Proceedings of the 2014 ACM SIGMOD

international conference on Management of data, pages 1435–1446.

[72] Wahbeh Qardaji, Weining Yang, and Ninghui Li. Understanding hierarchical meth-

ods for differentially private histograms. Proceedings of the VLDB Endowment,

6(14):1954–1965, 2013.

[73] Wahbeh Qardaji, Weining Yang, and Ninghui Li. Priview: practical differentially

private release of marginal contingency tables. In Proceedings of the 2014 ACM

SIGMOD international conference on Management of data, pages 1435–1446, 2014.

[74] Yuan Qiu, Wei Dong, Ke Yi, Bin Wu, and Feifei Li. Releasing private data for nu-

merical queries. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining, pages 1410–1419, 2022.

[75] Adam Smith. Privacy-preserving statistical estimation with optimal convergence

rates. In Proceedings of the forty-third annual ACM symposium on Theory of com-

puting, pages 813–822, 2011.

[76] Yuchao Tao, Xi He, Ashwin Machanavajjhala, and Sudeepa Roy. Computing local

sensitivities of counting queries with joins. In Proceedings of the 2020 ACM SIGMOD

International Conference on Management of Data, pages 479–494, 2020.

[77] Salil Vadhan. The complexity of differential privacy. In Tutorials on the Foundations

of Cryptography, pages 347–450. Springer, 2017.

[78] Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke. Differential privacy via

wavelet transforms. IEEE Transactions on knowledge and data engineering,

23(8):1200–1214, 2010.

[79] Ganzhao Yuan, Yin Yang, Zhenjie Zhang, and Zhifeng Hao. Convex optimization

for linear query processing under approximate differential privacy. In Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 2005–2014, 2016.

[80] Ganzhao Yuan, Zhenjie Zhang, Marianne Winslett, Xiaokui Xiao, Yin Yang, and

Zhifeng Hao. Optimizing batch linear queries under exact and approximate differen-

tial privacy. ACM Transactions on Database Systems (TODS), 40(2):1–47, 2015.

132

[81] Jun Zhang, Graham Cormode, Cecilia M Procopiuc, Divesh Srivastava, and Xiaokui

Xiao. Private release of graph statistics using ladder functions. In Proceedings of

the 2015 ACM SIGMOD international conference on management of data, pages

731–745, 2015.

[82] Xiaojian Zhang, Rui Chen, Jianliang Xu, Xiaofeng Meng, and Yingtao Xie. Towards

accurate histogram publication under differential privacy. In Proceedings of the 2014

SIAM international conference on data mining, pages 587–595. SIAM, 2014.

133

APPENDIX A

LIST OF PUBLICATIONS

1. Wei Dong, Dajun Sun, and Ke Yi. “Better than Composition: How to Answer

Multiple Relational Queries under Differential Privacy.” ACM SIGMOD Interna-

tional Conference on Management of Data (SIGMOD), June 2023.

2. Wei Dong, Ke Yi. “Universal Private Estimators.” ACM Symposium on Principles

of Database Systems (PODS), June 2023.

3. Wei Dong, Qiyao Luo, and Ke Yi. “Continual Observation under User-level Dif-

ferential Privacy.” IEEE Symposium on Security and Privacy (S&P), May 2023.

4. Wei Dong, Yuting Liang, Ke Yi. “Differentially Private Covariance Revisited.”

Advances in Neural Information Processing Systems (NeurIPS), November 2022.

5. Juanru Fang, Wei Dong, Ke Yi. “Shifted Inverse: A General Mechanism for Mono-

tonic Functions under User Differential Privacy.” ACM Conference on Computer

and Communications Security (CCS), November 2022.

6. Yuan Qiu, Wei Dong, Ke Yi, Bin Wu and Feifei Li. “Releasing Private Data for

Numerical Queries.” ACM SIGKDD Conference on Knowledge Discovery and Data

Mining (KDD), August 2022.

7. Wei Dong, Juanru Fang, Ke Yi, Yuchao Tao, and Ashwin Machanavajjhala. “R2T:

Instance-optimal Truncation for Differentially Private Query Evaluation with For-

eign Keys.” ACM SIGMOD International Conference on Management of Data

(SIGMOD), June 2022.

8. Wei Dong, Ke Yi. “A Nearly Instance-optimal Differentially Private Mechanism

for Conjunctive Queries.” ACM Symposium on Principles of Database Systems

(PODS), June 2022.

9. Wei Dong, Ke Yi. “Residual Sensitivity for Differentially Private Multi-Way

Joins.” ACM SIGMOD International Conference on Management of Data (SIG-

MOD), June 2021.

134

	Title Page
	Authorization Page
	Signature Page
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1 Introduction
	Tuple-DP
	Previous Work
	Neighborhood Optimality
	Our Proposal: Residual Sensitivity dong21:residual,dong2021nearly
	JA Queries
	SJA Queries
	SPJA Queries
	Integration to the relational database system

	User-DP
	Down-neighborhood Optimality
	SA Queries
	Our Contribution dong2021universal

	SPJA Queries
	Our Contribution dong22:R2T

	Multiple SJA Queries
	Our Contribution dong23:multiple

	Organization

	Chapter 2 Related Work
	I Queries Answering under Tuple-level Differential Privacy
	Chapter 3 Answering SPJA Queries under Tuple-DP
	Preliminaries
	Conjunctive Queries
	Differential Privacy in Relational Databases under Tuple-DP
	Sensitivity-based DP Mechanisms
	Smooth Sensitivity

	Residual Sensitivity
	Residual Queries and Boundaries
	Sensitivity of TEXT

	Local Sensitivity of CQs
	Global Sensitivity of CQs
	Smooth Sensitivity of CQs
	Deriving TEXT
	Computing TEXT

	Neighborhood Optimality
	General Neighborhood Lower Bounds
	Neighborhood Lower Bound for CQs
	Optimality of TEXT
	Elastic Sensitivity

	CQs with Predicates
	General Predicates
	Comparison and Inequality Predicates

	Non-full CQs
	Experiments
	Setup
	Implementation
	Experimental Results

	II Queries Answering under User-level Differential Privacy
	Chapter 4 Answering SA Queries under User-DP
	Preliminaries
	Notation
	More Knowledge of Differential Privacy
	The Sparse Vector Technique
	The Clipped Sum Estimator

	Methodology
	Estimate Radius
	Sum Estimation

	Chapter 5 Answering SPJA Queries under User-DP
	Preliminaries
	Database Queries
	Differential Privacy in Relational Databases with Foreign Key Constraints (User-DP Model)

	Instance Optimality under User DP
	R2T: Instance-optimal Truncation
	Truncation for SJA Queries
	Truncation for SPJA Queries
	Multiple Primary Private Relations
	System Implementation
	Experiments
	Setup
	Graph Pattern Counting Queries
	SPJA Queries

	Chapter 6 Answering Multiple SPA Queries under User-DP
	Preliminaries
	Notation
	More Differential Privacy

	Multiple Self-join-free Queries
	Multiple Queries with Self-joins
	Why Self-joins are Hard
	An Exponential-time Algorithm
	A Polynomial-time Algorithm

	System Implementation
	Experiments
	Setup
	Experimental Results

	Chapter 7 Conclusion
	Appendix A List of Publications

